W

e

Pinaenn W i

e O e U s WU Y e S o W i W O A W A

g

_ REPORT NO. GDC-DDF67.004

Apphcaﬁons of :

DISCRETE NETWORK SIMULATION o
IN SPACE VEHICLE CHECKOUT
FINAL REPORT VOLUME Il
COMPUTER PROGRAMS

GENERAL DYNAMICS
Convalr Division

REPORT NO. GDC.DDF67.004. "

Applications of

DISCRETE NETWORK SIMULATION L

IN SPACE VEHICLE CHECKOUT
FINAL REPORT VOLUMENl
COMPUTER PROGRAMS

DECEMBER 1967

Submitted to
NATIONAL AERONAUTICS AND SPACE ADM!NISTRATION
GEORGE C. MARSHALL SPACE FLIGHT CENTER
- HUNTSVILLE, ALABAMA
uad" .
CONTRACT NAS8.21102

Prepared by ' :
CONVAIR DIVISION OF GENERAL DYNAM’CS ,
" HUNTSVILLE, ALABAMA :

7
Fesoai

TABLE OF CONTENTS

List of Tlustrations -
Summary =
Introduction - .~

1. DNS UPDATE PROGRAM
Purpose.
' Restrictions
" Storage
Timing
Use
- Method :
Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

2. NAME/TIME CARD GENERATOR PROGRAM
Purpose
Storage
Timing
"Use.
Method
Output Format
Appendix A. Program Flow Charts
Appendix B. - Glossary of Terms

3. DNS/ATOLL INPUT CONVERSION AND PUNCH PROGRAM
Purpose -
‘Restrictions
Storage
Timing

. Use '
Method
" Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

2-11
2-33

3-11
3-47

S

DNS COMPARATOR PROGRAM

Purpose

-Restrictions.

Storage

" Timing

Use

" Method

Input Format
Output Format

Appendix A. Program Flow Charts.

Appendix B. Glossary of Terms

DNS TRANSLATOR PROGRAM

Purpose
Restrictions
Storage
Timing

Use -
Method

" Input Format

Output Format :
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

DTC/REFTAB PROGRAM

Purpose

. Restrictions

Storage
Use '

- Method .

Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

References

4-1
4-1
4-1
4-2
4-2
4-4
4-8
4-11
4-17

4-51

5-1
5-1
5-1
5-1
5-1
5-2
5-4
5-6
5-6
5-11
5-21

6-1
6-1
6-1
6-1
6-2
6-2
6-5
6-9

- 6-21

e

ILLUSTRATIONS

" Test procedure validation technique. -

Printout of revised DTC program (1 of 2).
Printout of revised DTC program (2 of 2).

New card listiﬁg from update program.,
Out of sequence listing from update program.
Composite master file tape listing of update program.

Equation listing name and time card generator program.
Terminal listing name and time card generator program.
Transactor listing name and time card generator program.

" Initiator listing name and time card generator program.

Punch card and manual input listing, input conversion program.
Punch card and data total, input conversion program. o

: Representétive parts of test procedure simulation.

Representative parts of ATOLL card image tape.
Prologue printout for comparator program.
Discrepancy listing for comparator program.
Unused component list from comparator program.

Simulation history printout.

Dictionary card deck (typical).
Translated simulation history printout.
Translated simulation state list printout.

Time card listing, DTC program.
Reference table printout.

iii

viii

xii

1-9
1-11

1-12

@RE&D:NG PAGE mm NETFIEMED

SUMMARY

The family of Discrete Network Simulation Programs developed by the Convair division
of General Dynamics were initially developed as a tool for time oriented simulation
and analysis of man machine systems. With this technique the operation of complex
systems can be accurately simulated. During the development of DNS, repeated test-
ing has proven its value as an aid to technical data generation, projected failure
analysis, and automatic malfunction analysis. It has been shown to be a versatile

tool thats application is limited only by the imagination of the user. Under the present
contract the application of DNS as an instrument to.aid in the validation of Saturn V
system test procedures was initiated. :

In order to optimize the technique of that procedure validation, and effect on overall
1mprovement in the versatility of DNS, certain programming tasks were undertaken
during this contract period. Changes were incorporated to existing DNS programs "
and several new programs were written to accomplish the task of test procedu.re
vahdatlon. The new programs are covered in detail in this volume. -

INTRODUCTION

A test procedure may be simulated and validated by stimulating a model of the system
in accordance with the test procedure, and comparing the results of the simulation
with the predicted test results step by step. Figure 1 illustrates the relationships
between the DNS/Test Procedure Validation programs. The following techniques and
programs are employed in the validation process: .

SYSTEM DESCRIPTION

Boolean equations describing the system to be modeled are punched on cards _ahd
assembled into an Equation Card Deck.

TIME CARD GENERATOR PROGRAM

The Equation Card Deck is then processed by the NAME/TIME Card Generator
Program which compiles a list of variables from the equations, determines the re-
quired timing data for each variable in the list, and punches this information on cards
to create the Time Card Section for the model.

UPDATE PROGRAM

The Time Card Deck and Equation Card Deck are formed into a Master Data File,
and stored on tape using the Update Program. The printout is thoroughly analyzed
and changes or corrections are inserted into the Master Data File again using the
Update Program. ' :

PREPROCESSOR-EDITOR PROGRAM

- 1 : *
The Preprocessor-Editor Program converts and cross references the system
description from the Master Data File, and stores this information on the model
tape formatted for use by the Simulation Program.
INPUT CONVERSION PROGRAM
The Input Conversion and Punch Program generates the driving functions required by

the Simulation Program directly from the ATOLL card image tape for the test
procedure. The program may be used with either Boeing or IBM ATOLL formats.

*INBINHOTL NOILVAIIVA FUNQIO0Ud ISAL °T omSig

SINNOJ
INAY 2 sis
AYOLSIH
NOLLVINWIS
Q3 LVISNVEL

FYUNLVIINIWON
31 LYW3HIS

HilM Q3INIYd 39

01.8378VIYvA 40

mmu«z mzm44<

1NOLINT ¥d

NO! 1YL 41937 13004

WV¥9084
HOLVISNVYL

SINNOJ
3740 7 sish
AYOISIH
NOLLVINWIS
Q3 1VISNVHINN

34vi 39vul

quvd 1101V
WOYJ A1103y10
NOI LVINWIS ¥0d
SLNdNI S31V3YD

jAMunIul-l-Il

1NOINTY¥d
zo_hcu_m_mm>4uoo=

A

S3IN3YIIIC

NO! LVINKHIS ?

3Yng330¥d 1S3t
40 ON11SIT
Q3 1VISNVYLNN

40 Q3 LVISNVYL

= T—

S3aN3Y34d10 1N0
SINIYd 2 3dvi
1831 1101V 40
$11Ns3yY Q31214

=344 0l S1INSIY

NOILVINWIS WOdd

$379vIyvA 40

S3LVLS S3YVY4WOI

Wyy90dd HINNd
NO{SY3ANOD LNdNI

G31Va1TYA 38 OL
3¥N433044 1S3t 40
34v1 39vVul
a¥vyd 1701V

3YnG33044 1834

I

NOT LVG1 VA
13004 404 INIud
AYOLSIH S3ATAOYd
SIWIL VIS -
1v S31Y1S sisi1®
" SININ! WO¥d
W3LSAS wS3LY¥3d0n

NO!LvQlvA 1831

WY§I04d
YO1V¥VdWOD

WYYD0Yd NOI LVINWES
404 Q311ViH0d
$378V1 3IN3IY343Y
379VIYVA SILVIYD
7360W SLY3ANOD

WYY00Y¥d NOILIYINWIS
NYOMIIN 31342S1Q

NOILVAI'TVA THNAHOO0Yd ISHL

WYY400Yd ¥0l11d3
408532044344

SWYYO0Yd 9ns ¥0d4
SQYV) T0¥.INDJ
GNY 13G0W

73000 SNG
31314107

Wyy90Y¥d d3~d3ud
SNG A8 3sh
404 _Q311vW¥0d
71300W SNG
313714W0J
ONINIVINGD
34Vl 3714 Y3ILSVW .

13000 SNQ
3137dW03 o

AYVSS323N H
1300W $3ivadn »

34 YILSYRW NO
SNOf Lvnd3 » SQy¥va

Wil SINIEN0D

HYYO0ud

$300)
3dAL ?_SSY1

33 YI1SVM

Aﬂlllrllllll

- SYILIVYVHI
XIS 40 WOWIXVH
34V S318YINVA
, WILSAS
3HL 9N18143530
SNOT Lvnd3 .NY31008

31vadn

SN9ISSY *7300W NI 1yvis Ol
A'll.lll S378VIHYA 3HL 404 AIIIIIII 1234402 ¥ 31vadn
: SQ¥VY Y3 13WVEvd ? 34¥1 NO

WL 31Y34) NOlivnd3 3Y0iS
WYY30Y¥d ¥OLVY3IN3D WY¥00Yd
aqyv) Wil 31vadn

NOILONYISNOD TAAOW WALSXS SHOMLAN mmmrmmymnvmnxu

SNOT LVNo3
13004 SNG

These driving functions conmst of punched and sequenced input commands and
control cards.

SIMULATION PROGRAM

The Simulation Programl uses the driving functions to stimulate the model and eontrol
the simulation in accordance with the test procedure. The results of the simulation
are stored on a simulation output tape. As each variable changes state, a cycle
counter is incremented by one, providing a record of the number of changes of state
of each variable for a given test. Each input is analyzed for its effect on the system,
and the resulting history of inputs and reactions are created for all the variables.
Printout of this ‘event trail' is optional to the extent that all, none, or only selected
portions may be prmted.

TRANSLATOR PROGRAM :

The Translator Prbgram substitutes descriptions obtained from an input dictionary for
the coded names in the output from a fest procedure simulation. The program allows the

. simulation history and the comparator listifgs to be printed with the variables: identified

by hardware nomenclature. The nomenclature can be referrable directly to system
schematics if desired.

COMPARATOR PROGRAM
The Comparator Program validates the test procedure by comparing the results of the .
test procedure simulation with the ATOLL predictions for the test procedure, and
lists any differences encountered. Areas of differences are manually examined to
determine the reason for the difference and will fall into one of these three categories.
1. Error in ATOLL tape.
2. Error in schematics.
3. Error in DNS model.
AUTOMATIC MALFUNCTION ANALYSIS PR&)GRAMS1
The Input Conversion and Punch Program, and the Comparator Program were written
for test procedure validation exclusively during the period of this contract. The Time
Card Generator, Translator Program, and the Update Program, were written as DNS

model building improvements during the period of this contract, and may be used
for AMA application as well. The following modifications were made to the Simulation

- Program to improve the test procedure validation technique.

1. Provide increased data handling capability. This was required to permit
the complete test procedure model to be simulated normally without

exceeding the program data storage limits available during the runs. .

The additional data storage area was obtained by removing all

references and routines pertaining to the conversion and processing of

the Binary Simulation Output Tape, and substituting a printed output

‘save tape for subsequent use with the Comparator Program. This 4

modification permitted increasing the data limits by two thousand IBM
- words.

2. Provide for labeling in the simulation history any input variable whose
state in the value table is already at the value requested. This permits
identification of any test procedure commands which may be redundant.

‘3. - Provide routines to count and store the number of times a variable
undergoes a change of state (cycles) during the course of a test procedure
simulation. The cycle counting is activated when a *HEAD LIST control
card is encountered, and the current cycle count for each variable is
then printed whenever a state list is requested. This permits identifying
variables which may be being overworked, and in conjunction with the '
Comparator Program, permits hstmg all variables which were not used
at all during a test procedure. :

The Down Translation and Cullmg Program (DTC) is not required for test procednre
validation if the variable name length is held to a maximum of six characters. If
expanded names are desired for test procedure validation, the Translation Program
will provide the uptranslated name when used in the process depicted by Figure 1.
Modifications to the DTC Program were incorporated to expand its overall efficiency
for automatic malfunction analysis technique usage. Modifications were as follows:

1. Provide the capability to accept input data from either the time and
- equation card deck or the basic data tape from the Update Program.

2. Assign the three character code names to inactive variables for
inclusion in the printed output.

3.. Provide segregation of processed equation data printouts by equation
- numbers.

4. Provide the capability to read formatted time card names..
A representative printout from the modified program is shown in Figure 2.

As with the DTC Program the REFTAB (Variable Reference Table) step is not utilized
during test procedure validation but was designed specifically to assist in verifying '
the accuracy and completeness of a modelled system intended for use with AMA.

This program reads the AMA model tape previously created by the DT&C Program,
converts the binary coded data describing each variable, and prints out a reference
data list which summarizes the identifications, classification, type, and use of each
variable in the AMA model.

4

*(Z 30 1) mex8oad DI pesIAdx JO us.oﬁim *z oan81 g

:) T ~ T T T TowerftvevetINGg T Ty TT T
P . 8%€FTVEVSTINIG € :
M . ~ 99TrZvEVSTINId Sz |
m B12rZVEVSTINTS z !
: VOTPIVEVSTINI z .
“ 4vErTVEVSTTINY) 1 q
L . IWVN NBILVNDI
. ASTT S3WVN a3Td193dsNn- — - I .
ww | | 19 wWnat HLEZG-DVYNIGISANA ~ - “gay |
— T T “CYIZTOVNIGISN T VEV
m - 0A SNII dYErTVEVSTINEND vV
s e e 14 T J0TITVEVETINIG — ~ " AfV ™
M) 1d 1 , 8YErEVGNId . XVV
ﬁ - 19 WAl "~ II00UErCSHZVEVS TTLNG D ™~ —"Myy—
— — ww40¢qm<>.muqHu<zu — e
"“cA_snivo s0 'so so so .:‘wm s dYErTVEVSTINEND Fwv !
TTcA sSNIVO SO _s0 s0 SO sO s . dYEFTVEVSTININI IVV |
1d VO SO__'SO___ SO SO__ SO - S_ .,yv. GYECEVSNId _ HVY
G) wWhave . SS S% S9 Ss . Sv S 330062 T TS HZVEVETTINGY ~ HVV
0C)_WNOY9 _ SS Sy S9 Sg Sy § " AVVSTIOYNIVEVSTILINGD VY
T T I I I L S S ZSddSTroYNIVEVSTI 16T 3VV
08 _11V¥0 . SO- SO. SC___ SO SO S 111012VEVSTISNEd QVY
o8 11v0 . SO S0, .s0 _s0 _so s T1TGTEVSSNEd IV,
GX_ X avo___ SO__° SO _S0- SO SO__S dYELTVEVSTTIUEN ~ AYY |
TTC1 n3Ive S0 S0 S0 S S0 S CHETIq VYV
a SGUV) SWIL GIIVISNVEINMEG-961VINWIS WYPMIIN 31399510 M
[- . . o .. . LT RSkt e

*(z 30 2) wreaSoad H1a Wmm?wp jo moyjulagd ‘'z oSy

OO OO NN NN

A el et et rd e

S

TTINGLNG N IAVISNVYINMBO = " ¥Z1VINWIS HYgMI3N 313¥ISTA

4 1 9 B3 T T i!i;mqq = 4YvV T T Ty
S 1 903 _ _ ,e,;-nwmaamano¢gﬂ<m< G111182=88VVSIMOYNTVEVSTTINGD o o
K ¢ 9 b3 ° 2Sdd s1If 0% IV EVETT 18D = @aVY GIF 0% 1V EVSIT INZY T TR
¥y € v b3 ¢ TTYI1AT v evelt T Sndd R
% 2 % b3 x 3300 oOcr 16X 2V €vsiT IN@D , .) *
v 1 % B3 *) el “IV evsll NId /7 = d ver TV EVGIT NEMD ®
€ 1 € 063 T e E Y TE TRV T E TR T R
€ 1 € b3 *T110TEVSSNEd#ISHVOSEVSMSEdRBHENEVGNIA/ =dvErTVEVSTINZ YD %k
€Ty [AVE I ’ T1TaT 7~ TTeve TsSnga T T T T T T T T T
€ € € 03 * A 2649V0S €EVS MS¥d x
€ 7T E o3 * g velr €Ve NId 7 ®
€ 1 €03 = 8 %Er 1Y €VSIT NId / = d ver IV €VSIT NZY) %
1 ¢ D3 * * QVv x d4dvv = 1lvy Y 1
R S A v F CITTIdI2veEVYSTISNAd+88YYSITOMIVEVYSTITINGO= a¢mﬂ~<m<m-z~qutia|wmx
L Z2 b3 ° 11101 2v €vsIT SNgd . *
TT9 T 2 b3 * 8 91T TUTTVTEVSTT N1d77 ¥
g 2 b3 * 33031 0f€r 06X 2v €vsll iINgD / *
TR T DI TR e e T T TV EVETT T TN 7 £
€ Z 03 % v 91r Iv €vsell Nld 7/ k!
2 2 b3 e EeVV SIr T oM 1V evelT T INBDT N , x
1. zb3 * 2 02r 1V €vSlt Nid 7 = d _Her IV EVSIT NIXMD *
1 1 03 - ° VY + 1VV = -gvy %
1 T 03 Ay e IVEV G TINE NI+ Ao e FTVEVE T INT NI =dre M TVEVSTTIOON T "% -
Y 103 ° d Yer IV €VSIT N#MD *
€ T 03 7TTH T RErT T T TV e G TTTNEND , T TR
b4 1 03 + d HEr IV €vSTIT N2ZXD . . , *
1 1 03 +- d YEr TTVUEVSTTT NTIDT TdHEr TYTEVSIT TI0ENT T R
1 moqa NZ11vN0d3 G3717IND ONV QI LVISNYYLl-sxx NEILVNDI 031INI-#x NZI1VNO3 TUYNIOIY¥@-%x

SECTION

1

DNS UPDATE PROGRAM

1

CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION -

1

' DNS UPDATE PROGRAM

AUTHOR: - T, C. Larson
’ Convair division of General Dynamlcs

PURPOSE: - The Discrete Network Simulation (DNS) Program requires the
' use of large quantities of IBM cards to describe a large network
or system. During the "model building' phase it is necessary
to load these cards’into the computer each time a change (cor-
rection or system conflguratmn alteration) is mcorporated into
the model :

The Update Program provides DNS pi'ograms with a model
o B on tape that may be readily changed with a minimum of card
‘ : _ handlmg.
The function of the Update Program is to:
1. Generate an initial model tape with each card image assigned
an ascending sequence number, in a format compat1b1e with
. subsequent DNS programs.
| 2. Insert new (additional) card images into model where directed.
3. Delete cards from model as directed.
4. Correct individual cards as directed..
5. Generate a model tape with new sequence numbers.
This progi'am was developed originally for IBM 7090/94 use but

is written entirely in Fortran IV for compatibility with other data
processmg systems,

<

'RESTRICTIONS:

STORAGE:

TIMING:

USE:

If program sorting of the input data is requested, total data
deck input is limited to 702 cards (including control cards).

This program, including files, occupies 31,327)g consecutive
locations in 7090/94 memory. The first subroutine in the
object program 'ASETUP' starts at location 03047 and the

final subroutine 'ENDEM' fills memory through location 20670 ~
a total of 15, 621)g consecutive locations,

Subroutine Function - .
1. ASETUP Driver . :
2. CD2BIN BCD to binary conversion
.3. CUPDAT - Read and write tapes and generate
_ sequence numbers ;
4, CONCRX Identification and interpretation of .
control cards
5. GALOAD Initial tape and sequence -number
generation
6. HERROR Printing of error messages
7. RDTCD Card reading and end of data sensing
8. TITLEX Paging and title printout .
9. UPSRX Stores data and generates sorted
control words for sequential card use
10. ENDEM Write tape EOF, rewind tapes, and

prints new tapes

Output of the program is approximately 1100 lines per minute.
Thus, a tape containing 4500 records could have approximately
200 records updated in 4 minutes, including complete listings.

This time could be reduced slightly by writing the print tape as
the model is updated, but for this particular DNS application it
was ascertained that it would be of more value to the user if the
'save' tape is rewound and printed, providing the user with an
actual printout of the DNS model input tape.

The program operates in three modes. Tape requirements are

. listed for each mode. The first data card contains all necessary

control words for program mode selection.

Mode 1

Col. 1-12 must have *LOADbCARDSb
Col. 13-66 blank : -
Col. 67-80 any information pertinent to tape ID, (may be

left blank)

1-2

This mode reads the model from cards, stores the card
image, generates sequence numbers, and writes the card
images and sequence numbers on a tape. At completion of
program, it rewinds the tape and provides a printout for
reference.

Tape Requirements -

~ Fortran Logical Systei,n Function - Tape
8 . A5 ' ~ DNS Model
- Mode 2
Col. 1-7 must contain *UPDATE
Col, 8-66 blank _ :
" Col. 67-80 (optional) same as Mode 1

This mode assumes that new cards are pre-sorted in ascending
sequence numbers. Out of sequence cards are ignored and

will not be included in the new tape. They will be printed with
notation to this effect. . ‘

Tape Requirements -

Fortrén Logical System Function Tape
8 A5 Existing DNS Model
12 A7 Updated DNS Model .
Mode 3
Col. 1-7 must contain *UPDATE
Col. 8-24 blank '

Col. 25-30 *SORTD
Col. 31-66 , blank
Col. 67-80 (optional) same as Mode 1

This mode assumes that update cards are not pre-sorted in
ascending sequence numbers and processes all cards accordingly.
It should always be used when numerous corrections are made

to the model.

Tape Réquirements - Same as Mode 2

For Modes 2 and 3 the next sequential data card must be one
or more of the three $ control cards listed.

1-3

$ADD

Col. 1-6 $ADDbb

Col. 7-24 blank

Col. 25-30 The sequence number on existing tape where
‘ new cards are to be added. Right adjusted
‘ to Col. 30.

Col. 31-62 blank

This card causes all cards immediately following up to next
'$' control card to be inserted into the model at the point
designated in Col. 25-30. Card columns between Col. 25-30
that do not contain numbers must contain blanks.

$DELETE
Col. 1-7 $DELETE
Col. 8-24 " blank : : ‘
. Col. 25-30 The sequence number of the first card in
existing model to be deleted. Right adjusted -
to Col. 30. o
Col. 31-36 blank or word thru _
Col. 37-42 The sequence number of the last card in
existing model to be deleted. Right adjusted
' : _ to Col. 42,
- Col. 43-80 blank

If only one card is being deleted, Col. 37-42 may be left blank
or the number of the deleted card may be repeated. Card

columns between 25-30 and 37-42 not containing numbers must
be left blank.

'$CORRECT

Col. 1-8 $CORRECT
Col. 9-24 blank .
Col. 25-30 The sequence number of the card in existing

model to be changed. Right adjusted to Col 30.

Card columns between 25-30 not containing numbers must be
blank., Card immediately following is card that will replace the
existing card indicated in card Cols. 25-30. ‘ '

The following card is required in all modes and is always the
last data card in the data deck.

*END DATA

“Col. 1-12 must have *ENDbDATAbbb
Col. 13-80 blank

. DECK SET UP:
A typical deck set‘up applicable to Mode 1 is as follows:

1. Binary program deck.
$DATA

2. *LOAD CARDS (optional tape ID)

3. - (Data to be loaded)

4. *END DATA
5. End of File (EOF) (7-8 punch)
A tyi)ical deck set up for Modes 2 and 3 i_s as outlined below:

1. | Binary program deck.
’ $DATA

2. *UPDATE *SORT (or blank) (optional tape ID)
3. $ADD 5266 (old tape sequence number)

4. - -
(Cards to be loaded)

.5. -. ..$l-)ELETE 350 through 520

6. $CORRECT 1501

7 ‘(Card to be inserted in place of one listed)
: 8; *END DATA

9. EOF

METHOD:

The course followed throughout the program is:

1.

Set up countefs, flags, and control parameters

~ and ready tapes.

" Read first control card,

Determine mode of operation and set ﬂags.

If 'load cards' mode is selected, prog'ram follows

A

B.

G.

H.

steps A through H.

Reads data cards one at a time;
Assigns sequence number,

Writes on save fape.

‘When end of data is sensed, writes *END

DATA and EOF on save tape.

“ Rewinds save tape. -

Reads save tape and writes on print tape.

Rewinds save tape.

" End run.

If UPDATE mode is selected, program follows steps
I through Q.

I.

Reads data card and determines classification
i.e., control card or input card.

If control card directs processing to appropriate
portion of program, add, delete, or correct.
Obtains point in existing tape where UPDATE is
to be inserted.

If input card processes card through portion of
program as directed in step J. Process includes
reading existing tape up to point directed. As the
old tape is read, card images are rewritten with

new sequence numbers on new save tape,

Q.

~ When addition or correction point is reached,

new card/cards are then added to new tape with

' continuing sequence numbers.

Cards added or deleted are printed out for reference.
In the case of corrections, both old card and new
card is printed. :

When end of data deck is sensed, remainder of old
tape is read and rewritten on new tape with new
sequencing until tape end of data is encountered.

If during processing an out of sequence insertion
number is encountered, the control card and its
associated cards are not processed but flagged
and printed for reference.

Program transfers to processing as préviously
stated in steps D through G. '

End run,

6. If update sort option is selected, all data cards are read
into memory and processed as in steps R through Z.

R.

Word 1
Word 2

Word 3

~ As each card is read, it is classified as a

control or input card.

As each control card is encountered, a 3 word
record is generated.

Contains the sequence number listed on the control
card. -

Contains the number of the core Sborage celi
where the first word of the control card is stored.

Contains the number of words stored pertaining
to this control card. This includes the number

of words in the control card, plus the number of
words in all associated cards that follow,

When the end of data is sensed, it is assigned a
number large enough to ensure that it will be the
largest sequence number.

U. The three word records are then sorted by the
first word (sequence insertion numbers) in
ascending order.

V. Aflag is set that will direct other portions
of the program to obtain data from core instead
of input tape. ‘

- W. Program then transfers the card images into
. _ : " the update portion of the program as outlingd
. in steps X through Y. :

X. The location of the card in memory is obtained
from the second word of the sorted three word
record. The number in word three is noted and
as the card image is transferred to the main
program for processing, it is reduced by the
number of words transferred.

Y. After processing each card image, the previous
number noted from-word three is checked for a
zero value. If it is not zero, the next card image
is obtained from the sequence core location of the
previous card processed. I it is zero, the next
three word record is obtained and a new core
location and word count is noted for the next card.

Z. Processing of cards and program termination
is identical as explained in steps J through Q.

OUTPUT FORMAT: A sample of the DNS Update Program is illustrated in Figures
C e ’ ~ 1-1 thru 1-3. The corrections that were made to the model tape

will be listed starting on Page 1 of the printout. Figure 1-1 isa
composite sample taken from an actual update test run. The
information (SORT TEST) printed on the title line after "Tape
ID" is an optional input for identifying the model tape. As.the
update of the tape processes, the changes are listed as they
occur. The sequence number appearing at the right of the ,
cards that were added is the new sequence number and will not
necessarily agree with the number on the update $ADD card.

The cards deleted in the example have the old tape sequence
number printed on the right. Correction cards will have both
the old card and new card listed in that order, including old
and new sequence numbers. The error in the example shown
is underlined and the correct card has the relay number
changed to 28K60.

1-8

‘wraSoad ojepdn woay Supsy] pIed MoN ‘1-T oanSig

¢omx;;.»y 82 : TTe0gugzZe SN1da* 2609+ 2987+ 16109+ $6700= VeZNTT

954y 8¢ sp;;sz:»{,::;szy.;.,uo¢mmMﬂ.m34ao. 2609+ 09Y%8Z+ 16109# S61@0= VEZNTT
03173¥¥ED SYM CUVD ONIMBTIEZd 3IHL . .
81s¢ € Vveve R *O1109 # AZUTHZ/» veMIve ~ = 7
L18€ 2 v Zwe = YIATHZ » WITHZ = €NZHZ/+ 01109 » ONZ9Z/# VINIHZ
918~ 1V 2%¢ * WNIHZ T €NZ92/+ Q1109 # VINIHZ # UNIHZ = €MZ%Z/ = INZH2
¢18¢ R 07109 % VINI®Z/# ONZHI/e OMZ¥Z/ = ENTHE
»18¢ A X *GLeR =T 4HZH2
elge . ghe : — [*hl6eQ = €NZHe
4 §: - & £ . _ , *9L680= T SA1%2
1182 R L A R 1 4 {2 maﬁzwo- 9ZN1%2
018% , 1%¢ . T occlefl= T V2ANIHT
608€ 1ve . ;a:.s;L! o *2L600= gIN1Ye
goge 2 8 1y *O1109 * QNZHZ/* QTMI¥Z
LO8E 1 9 1%¢ y 4+ 01109 = S)IHZ/+ maza¢m + 07109 = G23THZ * GINTHZ = VINIYZ
908 T TTZovIvE T < CJT109 + VINIHZ T
.momm;;z4n:w«1mz~@~sryruzmwwmm:usm~z~¢~\‘ VZNTI¥Z % VNI%Z + 01109 =» BNZHZ/e VNIYZ = W1
L . o , 0313730 3JYaM m°¢<u ONIMZIIEd 3IHL . . .
6z . 0 so so S 0 SO SO S 62410
gee T : 07 s0o T so S 0 SO SO S T ev 16
L2 . 0 s0o so S 0 SO SO S Lzv10
962 0 SO S0 S 0 SO sy TS T 9zv1a
€z T 0 __ so sc S 0 so SO S sZvla
1T 0 so S0 S 0 SO so S yZy 10
€sz o _so so. s 0 SO s0 S €210
o - 03500V 3¥3IM SCUVI ONIMEIIZd 3HL B
.;muau T WYHOZY¥d T31VqQde TYYPMLIAN 312¥9$3a 7 T 0 T TTTLSS1T1¥eS *Ql 3dvil

-]
[

i

If the *SORT mode was not used and a control card was
entered out of sequence, the corrections will not be incorp-~
orated in the new tape, and the cards will be printed flagged
by asterisks as shown in the example on Figure 1-2.

After all corrections have been incorporated, the SAVE tape

is rewound and a print of the new tape made. This consists
. of the time cards and equations as shown in Figure 1-3.

1-10

‘urgxdoad 3%&: woxy Supysi] eouanbas Jo MO °*zZ-1 8anJ1 g

Y v 0 SO S0 S 0 S0 SO S €10
. 0 SO SO S 0 SO SO S Z1a
2 v 0 SO so S 0 SO 0] S 110
£ 39Vd — AVY92Yd 3 IVadN YYEM13INI1IFISIT 1STL 03S *a1 IdVI

. T - EE ' yiva ON3=»
gosy 8z clgwges N@oo.,aaqao. 09%82/+ 19%82Z* 09¥82Z/+ T6109+% S61A0= VBINZ]
BT A o o - e19M8Z* 09INBZ/% 16109% S6100=. V8ZNZI
;i,,i.:wi,-ﬁ!_-eiz.;.,ww; ; ,!. ; ,:.so;mw.u.m.mm.su».w«x_, Cy¥yd ONIM@IIZd 3IHL T T
‘;«;zsgzr»lqzrepw.¢,m.uzmum:xw.m¢ s T e ss syl s T TIHGLD Q€T Wes .

i o S _ om : T103¥HA08 wmass

om»<¢aamauz~ 18N mxmx oz< wUZm:cwm 48 1N@ 3¥3IM SOYYI as\oz< Qy¥vd 12Y¥LIAED ONIMEZIIEd 3HL

_om¢¢ g o *0110a9% VINLD= VIONET
6z T T _ o .oddoo. VZNLI/% QINLDs 99NLD/% VINLD= VYLIONZ]
8y AT (88374 3INLI/w YIALO+ GDALIe VZALI/)* VHLDx 01109 VIONTT

o 0360V 3¥3M SCUYD ONIMZIIAY FHL | B

ZTT39vd — T HVY92¥J. TLVAdN NYGMLIN “TLIWISIC . ==t 31§31 B2§T *aT 3dvl

P

1-11

‘wexdoxd eyepdn Jo Supsyy odey mz_« JeysewW 9y1sodwoy °g-1 oandrg

viva ON3e
. 14359 w
A p— . e em e e e e o SNEILVNDS ON3I+
2€5Y _ : , L CVLEZN® E9NLIZ/e wYNLZ/= S60916
18- T T T S e I e S e e *QLZN® SHNLZ/+ HHNLZ/= S60918
, , : - *QLZN® SHNLZ/% EYNLZ/= - 77
A e - : o *Q8ZN* BHYNIL/# 9ydN~T
w2 R : e BONGZ/ e GHNGP- " v

e L VS SIS | - S . Lla
tad - EE | | *to. <A€E= T 9lq
BLEC e 8 et e e ._w7% 9odCs= SO
Liee 4 4 "9 TW2H* 011002= %10
oLec %t — e . faM1Es ABZdIE= €10
sLe2 1€ 21v6E% Y0019 ~21a

yL€2 Tz vyte o o o : * 9NTEX TNdTE
€Lez 1 VIE ~ » AB2dTE+ IMNTE/* BITE/* OINTEs IMNJ1E# ABZJIE+ 92NIE» AB2dic= "~ " TIQ
. ..s!l.l‘t)}..lal‘!A.!l\l! i — . : b e et m s en s e ,.i..l.i.ev.lr < - m 7& “ h(DO m *
1Lee _ v - SZWIL ON3«

GNP ILV¥340 3T1TVIASINAH ¥IVANEI/SIIWYNAG TV¥3INIO

cgeqeT

o s g

cLee . e 0o sO so S -0 SO SO S s60976
69€2 g SO SC S 0 SO SO N T ce0918
89¢€2 ¢ - so . ~ 0 SO SO S S6091L
1L9¢2 0 oS0 so TS 560919
- S
<

-

L ' v __s0O _so. S R : -1u
R SO SQ TS0 sw s " 91q
. o . __so SO . SO ¢1a

i
é
|
|
B
|
{
)
|
!

- ola
el

so T so
SO SO

o o A s g A e B Sl b s kS, AR A 8 i P L s e it e W

wv

o

1V,]

o
Y Y.,
FeX-X-X-X=-X-X-Xi
NAAAANI

~ NN OO

. "0 TUTsoTTTSe - S0 S0 210
v . 0 sc so_ B SO, - SO 11a
STV SNV, : SO S0 L e

R -) £ I TTHVY92Yd 3LvOdN MY¥EMIAN 313¥2S30 T 7 7 U 1S3L 1lwes - *al 34Vl

- APPENDIX A

PROGRAM FLOW CHARTS .

1-13

SET UP TAPES
& 1ERO

* COUNTERS &
FLAGS

CALL CONCRD
GET RUN TYPE
DATA FROM
CONTROL
CARD

LOAD CARDS
o

O

i

CALL ERROR
INVALID CONTROL
"~ CARD

Lt

CALL ALOAD
PROCESS CARDS
ONTO TAPE

CALL UPDATE
PROCESS NEW
CARDS ONTD TAPE

CALL ENDEM
HRITE EOF

& PRINT OUT.
TAPE

Figure A-1. SUBROUTINE ASETUP (1 of 1)

1-15

Taigess”

SAVE INPUT -
ARGUMENT - .
MQ = KUM

MO.LT.0-
NEG ARG,

SET NEW ARG.
TO0 VALUE OF
REMAINDER

AFTER DIV,
Mg = MOD (MQ,NSH)

SET ARG,
POSITIVE'
MQ = -MQ

ZERO ORIG.
ARG, .
KUM =0

)

SET INDEX
COUNTER
D0 40 J=1,6

[

SET DIVISION
. PARAMETER
NSH=2** (6% (6=J))

§NCREMENT
J+t

L

DIVIDE ARG,
BY DIV. PAR.
MQ = MQ/NSH

DIVIDEND
GREATER 9
MQ.GE.10

REPLACE
REMAINDER
WITH ZERO
NAC = 0

MULTIPLY
ORIG. ARG. BY
4 + PREY,

VALUE
KUM = (KUM*34KUM)

&

MULT, ORIG. ARG,
BY 2 AND

ADD DIVIDEND
*2 + NAC

1-16

RETURN

_Figure A-2. SUBROUTINE CD2BIN (L of 1)

SET CARD
READ &
PROCESS FLAG
2€R0 POF

CALL
RDTCARD
OBTAIN FIRST
CONTROL
CARD

ENTRY

SET SORT
: FLAG = 1
SAVE DATA SET ERROR
IN WDS 12-13
OF CONTROL "EESZFL“G
CARD FOR
TITLE
SET FOF - SET PDF

A OF CONTROL

SAVE DATA
ON HDS 12-13

CARD FOR
TITLE

SET FIRST
PASS FLAG.
M=1

1-17

3

Figure A-3. SUBROUTINE CONCRD (1 of 5)

ZERO SEQ. :

. ERROR FLAG : .
& PREVIOUS™ .} - - Coon
CARD INDEX -

v

SAVE NO. , .
* IN_5TH WORD
OF -CONTROL

" CARD

- CALL CD2B-
CONVERT NO.
TO BINARY

HAS \
PREVIOUS

CONT. CARDS
ADD

IS NOD,
EQUAL TO
<_PREVIOUS NO.

IS NO.
LESS THAN
PREVIOUS
NO.

REPLACE
PREVIOUS
NO. WITH
NEW MO,

l

SAVE 1ST
HWORD ($ADD)
ON CONT. CARD
FOR REF,TO
NEXT CARD

.

UPDATE -
PDF
= 1

RETURN

Figure A-3. SUBROUTINE CONCRD (2 of 5)

1-18

Ky

$DELETE.
CARD ~
?

1ERO SEQ, ERR,

FLAG & PREV, .
CARD INDEX
FLAG

!

SAVE NO,
IN 574 WORD
ON CARD.

CALL CD28 -
CONVERT NO.
TO BINARY

PREV. CONTR.,
CARD %ADD

1S NO, -
LESS OR EQ.
T0 PREV,
NO.
?

IS NO,
LESS THAN
PREV. NO,

— PREV. NO,

1-19

REPLACE

WITH NEW
NUMBER

SAVE 7TH

WORD ON
CARD

/. _CALL Cp2B
CONVERT NO.
" T0 BINARY

IS NO,
LARGER THAN
PREV. NO.

2

SAVE NO,
FOR UPDATE~
DELETE LIMIT

i

RECORD 1ST
WORD ON CARD
$DELETE FOR

NEXT CONT. CARD
REF,

y

SET UPDATE
DIRECTOR -
FLAG T0 = 2

RETURN

' Figure A-3. SUBROUTINE CONCRD (3 of 5)

St

ZERD SEQ.
-ERR, FLAG
& PREV. CARD
INDEX FLAG"

f

SAVE 5t1H
WORD ON
CARD *

CALL Cp28B
CONVERY
NO. TO BINARY

IS NO
© LESS THAN

PREV,
CARD $ADD
? PREV, NO

'Figure A-3. SUBROUTINE CONCRD (4 of 5)

1-20

REPLACE PREV, NO
HITH NEW NO.
SAVE. CONTROL CARD
$CORRECT WORD
FOR NEXT REF,

SET_SEQ. CHECK
FLAG ON R

DIRECTOR
- 10=

SET UPDATE

FLAG
4

SET UPDATE
DIRECTOR FLAG
0=3 -

SET ERROR
MESS SLAG

|

SET ERROR
MESS ;LAG S
=3 .
CALL ERROR
WRITE ERROR
MESS #£ 2
CALL ERROR SS}REE%;E
WRITE ERROR FLAG 10 B
MESS # 3 =
SET UPDATE
DIRECTOR
FLAG 10
/) o
SET UPDATE
DIRECTOR FLAG
Y 1
' e

Figure A-3. SUBROUTINE CONCRD (5 of 5)

1-21

RETURN

. READ A RECORD

READ;OTAPES FROM MODEL
TAPE

1€
COUNTER

LAST

DIRECTOR RECORD

CALL TITLE
WRITE TITLE
PAGE 1

' PRINT $ADD - JNCREMENT
SET CARD
READ FLAG . 8UB TITLE :CO‘l:t:TER
oz (ICARD)
§
IS
, LCRD ONE
SET CONTROL _ INCREMENT LESS THAN LAM
CARD DIRECTOR LINE COUNT
FL:g 10 . . . +3

WRITE CARD

CALL
ROTCRD - %u'ﬁéﬁ“
OBTAIN FIRST

CONTROL CARD ;TAPE

g

Figure A-4. SUBROUT]NE CUPDAT (1 of 9)

1-22

- POF
=2
$DELETE

e

"INCREMENT

. LINE COUNT .
+ 3

o

READ OLD
- TAPE

LAST RECORD -

Figure A-4. SUBROUTINE CUPDAT (2 of 9)

1-23

1S LCRD "\
LESS THAN
LAM -

IS _LsSK1P
ZERD

INCREMENT
RECORD NO. EQUA AEESEQE%.
COUNT # § TO SKiP NO. THAN SKIP + %

NO.

HRITE OLD
RECORD ON
NEW TAPE

& RECORD . PRINT PRINT OLD WRITE OLD
COUNT KARD, LCRD TAPE REC, RECORD
N FOR DELET ION FOR DELECT 10 ON NEW
REF. - _ REF. TAPE.
y - A
INCREMENT INCREMENT
LINE COUNT - Uil cout
+ ! 4+ “

: CALL
PRINT TITLE , LINE COUN LINE COUNT TITLE PRINT
& PAGE NO. Yo MORE 49 MORE 49 ;Aééing

Figure A-‘fi; SUBROUTINE CUPDAT (3 of 9)

1-24

R g

WRITE LARD

P

CALL RDTERD.
READ IN
NEW CARD

LAST
CARD FLAG
ON

CALL CONCRD
INTERPRET CARD

$DELETE
CARD

$CORRECT
CARD

QuT OF
SEQ. CARD .

WRITE $ADD
SUB TITLE

Figure A-4. SUBROUTINE CUPDAT (4 of 9)

1-25-

Y

" INCREMENT
LINE CoUNT
L3

HRITE
DATE CARD
ON NEW
TJAPE

PRINT CARD

INCREMENT
LINE COUNT

*3

INCREMENT
LIN51C0UNT
+ .

L

CALL
TITLE PRINT
TITLE &
PAGE NO,

Figure A-4. SUBROUTINE CUPDAT (5 of 9)

1-26

PRINT &
CORRECT
SUB TITLE

INCREMENT
LINE COUNT
+3

READ OLD
TAPE &
RECORD

LAST RECORD

| NCREMENT
RECORD1C0UNT
’ +

¥

HRITE OLD
RECORD &
NEW NO.
ON NEW
-TAPE

PRINT OLD
RECORD &
NO, FOR
REF,

INCREMENT
LINE COUNY
4+ 1

CALL TITLE
NEW PAGE
& TITLE

" LINE
COUNT MORE
THAN 49

CALL RDTCRD -
GET ANOTHER

{NCREMENT
RECORDicOUNT
4+

Figure A-4. SUBROUTINE CUPDAT (6 of 9)

1-27 .

e

PRINT CARD
& SEQ NO
FOR REF

INCREMENT
LINE COUNT
+ 1

CALL TITLE
NEW PAGE
& TITLE

HRITE CARD
& NEW REC,

Figure A-4. SUBROUTINE CUPDAT (7 of 9)

1-28 .

WRITE END
-DATA RECORD
FOR REF,
ON PRINT
ot

INCREMENT
L INE COUNT
+ 1,

LNCNT
GREATER 49

. CALL TITLE
TITLE & NO.
NEW PAGE

Figure A-4. SUBROUTINE CUPDAT (8 of 9)
1-29

CALL -
RDTCRD
GET ANOTHER

CARD .

CALL *
CONCRD
INTERPRET CARD

SET _ERROR
FLAG = 2

$ADD CARD -

CALL ERROR
PRINT ERROR

MESS %.2
(OUT OF SEQ.)

Figure A-4, SUBROUTINE CUPDAT (3 of 9)

1-30

SET READ
FLAG TO
= 1

CALL RDTCRD
GET A CARD
iMAGE

HRITE LARD +
COCNT ON

SAVE

TARE

~ RETURN

Figure A~5. SUBROUTINE GALOAD (1 of 1)

1-31

ERROR
MESS FLAG

= 1
2.

ERROR

MESS FLAG
= 2 :
-?

FOR REF,

{NCREMENT
LINE COUNT
+1

“FOR REF,

INCREMENT
LINE COUNY
+ 4

INCREMENT
LINE COUNT
+3

LNCNT

MORE 49
?

CALL TITLE
NEW PAGE
& TITLE

RETURN

Figure A-6. SUBROUTINE HERROR (1 of 1)

1-32

SET SORT
INITIAL ENTRY
FLAG TO
= 2 (SECOND ENTRY)

CALL
UPSORT
GET A CARD
IMAGE FROM
MEMORY

SET END
(IFLG)
10 1

LOAD
CARDS RUN
2 .

AINCREMENT
CARD COUNT
+ 1

¢’ _—
‘ RETURN

" Figure A-7. SUBROUTINE RDTCRD (L of 1)

1-33

ZERO LINE
COUNTER

INCREMENT
IPAGE
+ 1

SET IPAGE T0
1

1-34 .

PRINT TITLE PRINT TITLE
WiTHOUT + WITH DATA
DATA
iﬂ J
" INCREMENT .
- LINE COUNTER
+5

Figure A-8. SUBROUTINE TITLEX (1 of 1)

INETEALIZE
COUNTERS

P

LI
CONTROL
CARD

e =

~ LOCATOR COUNT

STORE WORD -
iN LOCATOR
RECORD &

I NCREMENT

l

ZERO WORD
_COUNT -

OBTAIN

" INSERTION
NUMBER

CALL CD2B
CONVERT NO.

TO BINARY

STORE INSERTIOM
NO. (N LOCATOR
"RECORD &
INCREMENT LOC,
COUNT

]

STORE STORAGE
CELL COUNT iN
LOCATOR RECORD
& INCREMENT
LOCATOR COUNT

Figure A-9. SUBROUTING UPSORT (L of 2)

s

1-35

STORE WORD
COUNT N
LOCATOR RECORD
& [NCREMENT
LOCATOR COUNT

STORE LARGE

NO., STORAGE -

ceLl COUNT &
WORD COUNT IN
LOCATOR RECORD

HRITE END
DATA WORD
iN STORAGE
FOLLOWING
PREV, CARD

SORT LOCATOR
RECORD IN

ASCENDING ORDER
OF 3rD HORD

SET RETRIEVAL
FLAG

&
COUNTER

O0BTAIN
ADDRESS - OF

STORAGE

OF CARD

SAVE HORD

COUNT IN
RECORD

IS REC.
COUNT POS.

. RECORD {NTO

STORE CARD

FOLLOWING
PREVJOUS
CARD

INCREMENT

COUNT,

TRANSFER

CARD INPUT
BUFFER

l

DECREASE
HDR?‘COUNT

" Figure A-9. SUBROUTINE UPSORT (2 of 2)

1-36

CALL TITLE
NEW PAGE
L TITLE

. _LOAD
CARDS RUN

y

WRITE END
RECORD ON
SAVE TAPE

HWRITE END
RECORD ON
NEW SAVE
TAPE -

REWIND : REWIND

0

~ Figure A-10. SUBROUTINE ENDEM (1 of 2)
1-37

o

READ NEW
SAVE TAPE
. RECORD &

PRINT .

" INCREMENT
LINE gouur
t

LINE
" COUNT .OVER
49

REWIND
oLD & NEW
TAPES

CALL TITLE
NEW PAGE
& TITLE

READ SAVE
JAPE RECORD &
PRINT

INCREMENT
LINE gOUNT
+

LINE
COUNT OVER
49

CALL TITLE
NEW PAGE
& TITLE

LAST RECORD

REWIND -
SAVE
TAPE

S

RETURN

‘Figure A-10. SUBROUTINE ENDEM (2 of 2)

APPENDIX B

GLOSSARY OF TERMS

1.0 INDEX OF VARIABLES

The followixig is an alphabetical listing of the terms used in the Update Program.

 NAME

1-39

DESCRIPTION

-CARDS Tape 1/0 buffer.
_CDCNT Sequence number.
IADD ; Word/Record count.
ICARD Sequencing recount,
ICONT SORT words/record count.
- IFLG End card enountered flag.
IKNTR SORT storage cell counter.)
ILOC SORT retrieval word sborage cell
, count.
INUM Same as LAM/LSKIP after conversion.
" IPCD Temporary storage of UPDATE
' " control card.
ISEQ Out of sequence control card encoun~
. tered flag.
"ISNO Update correction factor.
- ISORT SORT option selected flag.
ISTOR SORT card internal storage.
ITEM Temporary storage of retrieval word.
.IWD SORT retrieval word storage.
KARD Tape I/0 buffer storage.
LAM Sequence number from UPDATE
control card. -
~ LARD Card 1/0 buffer storage.
LCRD Sequence number on tape record.
LNCNT Printout line count.
LSKIP Delete end sequence number from
; ' UPDATE control card.
LTAP/MTAP " Title words from initial control card.

e d

2.0 DEFINITIONS

.~ NAME

CARDS

CDCNT '

IADD

" ICARD

' ICONT

IFLG
IKNTR

ILOC

INUM

'DESCRIPTION

During reading and writing of new tape complete 15
word record on tape is transferred into CARDS and

~ onto printout.

As each card is read, CDCNT is increased by one
and is stored as 15th word on tape being created.

“Record count of words during SORT card image

retrieval. Value is found in word 3 of each set of
retrieval records and is reduced by 14 as a 14 word
card record is transferred into location LARD, A
zero value in IADD signals that a new retfrieval record
must be obtained to find location of next card image.

- Each time a tape record or card is read, ICARD is

incremented by one. Stored as 15th word on newly
generated tape,

The count of the number of words stored in ISTORE
that apply to a specific control card.

In read card routine, if a card containing *END DATA
is encountered flag is set to 1 to signal no more cards
to be input. Flag is tested during update routine and
when sensed to be on, program bypasses further read

- calls. . »

As cards are read into memory during a SORT run,
IKNTR is incremented by one for each word entered.

- When a control card is being read the value or IKNTR

for the first word of the control card is stored in the

" retrieval table IWD,

"Retrieval table word counter. SORT option.

Buffer cell for input of sequence number read from
control card. Value in INUM is input to CD2B con-

- version routine and then transferred into LAM or

LSKIP as applicable.

. NAME

IPCD

- ISEQ

ISNO

ISORT

ISTOR

ITEM

~ KARD

LAM

LARD

LCRD

DESCRIPTION

" As each control card is located, the first word is

saved in location IPCD. As the next control card
is encountered, the first word is compared with
IPCD to see if this newly encountered update instruc-

tion followed an ADD update instruction.

During control card interpretation if an out of sequence
update number is encountered, ISEQ is set to one so
that if data cards are related to the out of sequence
control card they will be printed. Flag is turned off

‘when the next control card is encountered.

If previous control card was an ADD card, correction

‘factor of one (ISNOF 1) is included in the comparison

of sequence numbers to ensure the validity of the

" new update number.

»

Flag is turned on if first control card read indicates
sorting of the update cards is desired. Flag is

. sensed in subroutine RDTCRD to direct where card
. will be obtained. Flag off ~ from A2 (input tape), .
- flag on - from memory as directed by retrieval table.

Internal storage of update data deck during sort

. option cons1sts of 9, 800)10 words,

During sorting of retrieval table, three word record
is stored in this location.

Retrieval table consists of 21()0)10 words for storage
of three word locator records. Word one is always
zero. Sort option. - :

Same as LARD but for tape records.

Working value converted to binary of sequence update
numbers on control cards.

Fourteen (14) word buffer for card image in memory
during input/output and card interpretation.

Fifteen (15) word on tape being read, is compared -

with input control card number 'LAM' to find plaee
on tape to update.

1-4

NAME
LNCNT

LSKIP

LTAP/MTAP

DESCRIPTION

Counter for printout and paging.

Same as LAM but only used during delete,

Internal memory to retain information listed in
CC 67-80 of first control card. Each time a title

" is printed for a new page, the information into

these words is printed on the LH top of page.

SECTION

2

NAME/TIME CARD GENERATOR PROGRAM

- CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION

2

NAME/ TIME CARD GENERATOR PROGRAM

AUTHOR: A. R. Stone ,
-' -~ Convair division of General Dynamics
PURPOSE: The NAME/TIME Card Generator Program compiles a list
: R of variables from the equation cards of a system model, ‘
determines the required timing, and classification data for
each variable in the list, and punches this information on
cards to create the time card section for the model.

Manual preparation of the time parameter cards for a system
model can involve considerable time and effort. Each
variable that is included in the system model must have a
time parameter card containing its name, its pickup and drop
out times, and an activity code relating to its working state for -
Discrete Network Simulation (DNS). If the variable is to be
considered as a candidate for Automatic Malfunction Analysis

- (AMA), the card must also contain the hardware classification
code for the variable. Data for time parameter cards is
normally written by the analyst on coding sheets and sub-

v - sequently keypunched. Complete and thorough checks through-
out this entire process are required to avoid errors. The
data entries and format for these cards must be accurate if
results from the subsequent DNS and AMA Programs are
to be valid. \ :

The technique utilizing the NAME/TIME Card Generator
eliminates most of the manual effort required to accomplish
these tasks.

STORAGE: o The pi‘ograin dccupies 42,171) , consecutive locations in
memory and consists of the foﬁowing 6 subroutines:

TIMING:

USE:

4.

5.

6.

READ Driver and mode selection . ‘

NAMES ' Generation of original tables and
duplicate elimination
NARRING Comparison of LH and RH tables for

duplicates, generates third table and
packs LH and RH tables.

NSORT Sorts each table in alpha numeric order
NTYPE Classification, time parameter and
R AMA code determination
PRINZ Printing of time cards and punch tape
generation '

Approximately 500 time parameter cards will be processed
for each minute of 7090/94 computer time,

The Time and Name Card Punch Program can be used in three

distinct modes. Tape requirements and control cards are
listed for each mode. :

1.

' Mode 1

First control card in data deck

Col. 1-6 must have *EQUAT
Col. 7-80 blank
| Equation cards

Immediately following last equation card

Col. 1-6 must have *ENDbE
Col. 7-80 blank

This mode produces time cards in the format required for
the DNS/Preprocessor Program.

Mode 2

1.

First control card in data deck
Col. 1-6 must have *EQUAT
Col. 7-12 blank

Col. 13-18 must have DTCbbb
Col. 19-80 blank

Equation cards

. 2-2.

3. Immediately following last equation card

Col. 1-6 © must have *ENDb!
" Col. 7-80 blank -

The cards are generated in format required for the
DNS/Down Translating and Culling Program. .

Mode3
1. Fi.jrét control card in data deck

Col. 1-6 must have *EQUAT
Col. 7-12 blank :
Col, 13-18 must have BOTHbb
Col. 19-80 blank

2. Equation cards

»

3. Immediately following last equation card
Col. 1-6 must have *ENDbE

Cards will be punched for both the DNS/DTC and
DNS/Pre-Ed Programs.

METHOD: ~ The program reads boolean equations from IBM punched cards
. ' ' and culls out duplicate variables and operators. The remaining
variables are classified and a specific time and parameter card
is punched for use in conjunction with each variable. Initial
processing flags are set to zero and data cards are read until
the beginning of the equations is sensed. A flag is then set for
reference during processing. Format instructions are .
obtained from the equation beginning control card and a flag
is set for program processing direction. The difference is in
the placement of time parameters on card image. The Down
o Translator and Culling Program time field begins in col. C37
' while the preprocessor editor requires time cards with the
time field starting in col. C13.

Control of processing is transferred to subroutine names. The
cards are then read in one at a time, stored, and checked each
time for an end of equations indication. Initial entry flag is
tested for zero, if so, the working cells are set up for names
card processing. The initial entry flag is then turned on, and

a card counter is incremented. The first word on each card is
sensed for a blank or initial equation card. Only initial equation
cards will contain data in word one. Finding data in word one,

2-3

the program assumes this to be a variable that appears on
the left side of the equation and processes it as such. - The
variable is compared to those stored in a table designated
as LNAMS, (left names) to see if it has previously been
encountered. If it is a duplicate, it is stored in a separate
table and an error count record is incremented. (Names
should only appear once on the left hand (LH) side of equation). -

The variable is then stored in LNAMS for LH variables and
the LH names counter is incremented. The remainder of the
card is read and the variables are separated from operators;
one variable at a time. As each variable is locatead it is com~ .
pared with those in the RH names table. If a variable is found
to be a duplicate right name, it is ignored and the next name
is obtained from the card. When a period is located or a total
of 72 card columns have been tested, a new card is obtained
and the same sequence is repeated for each new card until

end of equations is sensed. At the completion of names
comparison, two tables will have been created.

1. "LH names" variables that appear on the left of an .
equation with duplicates eliminated and flagged as errors.

2. A list of variables that appear on the right side of the
equation with duplicate variables eliminated. -

Program control is then transferred to subroutine NARRNG
where a second pass through the tables is made, this time
comparing the RH table with the left hand table for duplicates.
" I duplicate variables are found, they are written in a third
table and the cells in the LH and RH tables that contained the
variables are filled with zeros. After the entire LH and RH
tables are processed, the zeroed cells are eliminated by re-
arranging the variables in each table. Program control shifts
to subroutine NSORT and all three tables are then sorted in
ascending alpha numeric order and each table classified by
variable type.- :

1. LH variable table contains 'ferminals’.

2. Table of variables from LH and RH contains
‘ transactors'.

3. RH va,ria.ble table contains 'initiators'.

Each table starting with the "terminal’ table is then processed
to identify the following:

2-4

1. AMA classification code (1s variable a coil, node,

contact, etc.). B

2. The time sequencing parameters for each type (node
coﬂ conta.ct etc.). :

3. Whether format of card is to be in DT&C (extendeq
or prep-ed (condensed) format.
!
4. Whether variable is active!or inactive (does variable .
change state during a normal simulation or is its
state constant). : ~ ot

Beginning with the '"TERMINAL' table, each variable is
processed through subroutine NTYPEZ one at a time..

Key words in core are compared with the variable being
processed. When a match is found, an integer representing
the appropriate code, class or time field is placed in the
a551gnment key KQDE.

Control is shifted to subroutine PRINZ where the value of
KODE directs the program and selects the correct print

and punch format, and this format is then written on a punch
tape and printed for reference. The completed punched card
~will contain the variable name, the time parameters, the
active, inactive code, and the AMA class code. The prmtout
will be ordered as follows:

R | 1. List of equations.

2. List of program generated time cards for terminals.
3. List of program generated time cards for transactors.
4. List of program generated time cards for initiators.
5. Number of names processed.
OUTPUT FORMAT: Examples of typical printout generated by the DNS time card -
S generator is shown in Figures 2-1 through 24. The first listing
is the total equation cards in the order of input as shown in

Figure 21. The *END equations card at the bottom of the
- listing indicates that the entire equation deck was input.

Figure2-2is a sample listing of the variables that have been '

classified as terminals. The sub title on the top left of sheet
specifies this fact. To the right of this class sub title is the

2-5

‘mrex8oad xojexoussd paeo m&ﬁ pue _,o&an Bupsyy uopenby *1-2 .on:.mrm ‘

i P D S

L Y

-
e SH e e eam e T e S O T T o

o _ 3 ONZ»
.oaa00¢ qmzwuxc maxsuq GoNLD/* VINLD= VIINZ

.ﬂmzmux+ INLD/ = VEHLD+ QENLI% VEULI/)» VNLI#+ O11Q09= VLONTTY

oy o AT e el 7

L R

[——

*GTTA9» uHxNUt %8I+ 4XG6LJ= - 86MLD
_ *6L600= VeMdLD
.aaaoo¢ (ENGLI# ZHUSLI/+ ASLI+ JTINLD)= g9%L)

01109+ OXM8D= VHINLD

.ﬁﬁﬁoo. (ENSLD® ZUSLI/+ 2ZAUSLI+ DINLD)= €MNLD
CTIA9 (ENGLO® ZNSLD/+ 2UGLI+ DIMNLD)= 22MLD
*€L680= 92ZiLD

*0TT1A9% DJTIMNLD® D2WLD= vZNLD

L *C1109#% S11M86= S ITMLD.
°2L680= 81%L)

0T1TQ9 VZHILI/+ SIMNLI+ 01109+ VIMNLO* @¥NLI/= VYINLD
°N@LSL * GT1Q9 = 12109

S *gLONZI+ 8LONTI1 = 8LON
° : *VLONRI+ VLONET+ VLIONZI+ VLONTI= VLION
*gLON = 666140

e e o : “GTTQ9* (0989

+ <mxhux+ VZNLI+ <Nzh0\t SINLD/)= €XNLD® (EFQTIMI+ 92MLS/)= eLSId

o en AN e a R R N R A Y e b

. .- - e e LY SR,

S e]

L G T B e L I

b C——————. AR SO 2 S 3. S e S W st

B e 2 e o b s S

P

o i = e . .

*(1109% €21%96= 20510
0T1Q9 VINLO® 9¥8I/+ IM8Ds V¥MILD/= 10s1a;

OTIQ9 VINLO® WMLO* €38D/% VHMLI/= -+ GOSIA

R 'QaaoOt <Hxhu\t MBI/ # OMBI/# ENLI* (EFITMT+ 92N(G/)= 66%10

. *pSMILA/x VLIIN= T 86%ICQ

0T109 EZIX96/# ZZIMLE+ CL6PO= 62%1Q

*C1109+ €2IN96/+ 12INL6+ 69680= . 82Zvla.

*C1109% €2IM96/% CZTNL6+ §96@0= - LZ%1Q

_ *01109#* £2IX96/+ 9TINLE/+ 61TNLE= ~~ 92%1Q,
e *CT1TQS* €2TN96/% LTINLE6/* 81IML6E= sgvl1a’
T e 1109 €£2T096/#% STINLO/* LITHLE6= . 424I1d

.. *01109% €£2TIN96/+ 61TMLE/* 91TML6= €ZvIQ

- ONILSIT N2ILlVND3

1 2N 39vd - | mu<>znuxmuuzqz>o Iv¥aNI9 Wvuop¥d HONND Q¥VD 3IWVN ONV. 3WIL SNG

‘mexdoad xojexausd preo ewy pue sweu Sursiy .ﬁaguoh *Z-2Z oan8r g

.. £ - w6 <6 ;.v;mwo
| 1 _<c:;;mmmmzszm_w
1 Tvo so SO
L vo_so_'so.
g e s
1w s so

“sg

. . YO_-.SO___ SO

FNET——

z N 39vd

T YIVAND/SIIWYNAQG 1

S0
SO

SO

SO

sC-

<o

SO
50

)

SO

SG

SO

S0

Ss

S

e W —

YELEER

. mo

S0

sy

SO

SO

mo ..

Ss ¢

\,,,.w .‘

CT S3EVINVA 9T)

. n o e e et
.
L et et ommtieste s e e e
N M e v o r o+ sonto mmmr i s e
; ‘ : v
-
e e R S

T T ST e s s et am s

o, S et ks a1 et e e s s

SIVNIWSIT 4 LisI17:

66510

86%10
86%10,

62410
62%10

gz%10
8z410

L2%10
L2%10Q:

“9zv1Q.

9Z%10

gzv1a.
G2Zv1a.

vZh1a.
¥Z410

€zv1Q’
€2v10:

T AgNLD

asNL)
12109
12109 -

!

WY¥92Yd HINNJ O¥YD SWYN ONY 3WIL SNO

S A

£

number of variables_fhat were classified as terminals. Each

- variable is listed two times on the left side of the page. The

first printing is made when the punch tape is written for the
dictionary card. The second printing is a copy of the time
card that will be punched including the time field assigned by
the program and the variables classification coding. Printing
the variable twice as shown provides a listing where dictionary
data may be written for the remaining portion of the cards for
keypunching. An example of this application is shown for bus

6D121 in Figure 2-2. The transactors and initiators are listed

as shown in Figures 2-3 and 2-4 respectively. Printout for

" variables in these classifications is the same as previously

described for "terminals'.

After all the cards have been printed an account of names
is listed as shown in Figure 2-4.

2-8

‘wrex8oad xojeasusl pxeod oy pue aweu Sunsi xojoLsUBL], ‘-2 mn:wrmv

N

A R B 0 iy 1 8

vé Ss ss ss T ss s s

vs _S¢_ _SS S§& S§ S§ s

et > Wi e w

€

Vs S§._..8¢ . Ss 88 Ss S

VS SS__-SS _.SS . S§ Ss_ S

T TweTTTse T T se se se Tsg s
M. ¥§ S§- 'S¢ 'S¢ . S§ S§_ S
. N N ' . .: YMA.)
LTI " (s318VINVA 81

BN 39vd

MIVANZD/SIIWYNAQ 1VY¥3N3O

.

7 suplL

- oA .. .

CVLINTT

vy
. L WSNLD
o] o m¢z~u,
GeNLD
i
T & 2.7
. o B eNLD -
€eEALD
T T 9wLa
L X R A
) - B _8adLD
gZAuLd
. e \,.f.,.,,y.}:,:,;ni: - ..:., <N¥\loa
R SN T S - . e——— .. P . <N¥N.UA.
L) S ITALDY
JINLD

I
41NLD |

VINLD -
VINLD

i

JVSNVYL 48 1SIT

WY¥9Z¥d HINNG O¥YD IAVN ONV ZWIL SNQ

‘meaSoad annm.aum pXed oWy} puB oweu ‘[e10} Soureu pue SupsI JOJBNIU] H-g 9anS1Jg

EPTIN

[T UGN WISHPIE SpIy e ap S g S R

5 ve wm;,;.mwi

¥ Vs SG Sg

By R s W

¢ b I Vs

o A .G e P s e S b A R,
v

vo-___sC SC

e 33 w1 % St D . e ST, o 2L s wmmmn 9% (R,

T ye TUS6 SO
% Vs sg sg

..:‘,wm P m m

... vo _s6_ _so

‘s gN 39Vd

WIVANZI/SIIWUNAQ TV¥INID

’ vk..;. ..‘mo> -

(S3TYVINVA S€

T T LTTaLE

. R A LT
S 9TINLG
9TINLE

T T e 2 IN96
e €ZIN96
L e i T A, WO 5 - - 4 e m Ry S e Ak & e Wi e e e z&#mh#
N3LSL

e SRS

T -1 L

: , 92306
e " 9ZN0S”
e e 8 e b, conn e st b A n s e WO ot iR et R O V* o&Nn
o | L oNow

ECOTMT »

e EFOTMT

- -
g ey U e

= SIWVN 40 ¥WWON WLBL

SYBLVILINI dg 1SI1

WY¥OZYd HONN O¥VD SWYN ONV ZWIL SNO.

2-10

. APPENDIX A

PROGRAM FLOW CHARTS

2-11

PRECED

Yy

. 1ERO PAGE
COUNTER &
RUN PARAMETER
KiNo = 0
" NPAGE = 0

g

READ A CARD
READ (5,1000)
carD

oR-Rifbe.0

‘EQUAT 1ONS
%CAT ED
\ NEQ; =1

* Figure A-1. SUBROUTINE READC (L of 4) _

2-13

2ERO EQUAT JON
FLAG-SET
EQUAT 10N
LOCATOR FLAG ON
NEQ=1 NDFLE=0

'

 SET UP
INDEXING FOR

- FORMAT CHECKS
00 1T 1=1,2

INCREMENT
18Y1

SET DTC
RUN FLAG
KiIND = 1

SET PREP
RUN FLAG
KIND = 2

2-14

23

Figure A-1. SUBROUTINE READC (2 of 4)

- PAGE NO. = 1

!

TITLE PAGE

7

" {NCREMENT
LINE CQUNTER
+.

PRINT CARD
IMAGE -
FOR REF,

INCREMENT

ZERO LINE
COUNTER

CALL NAMES

PROCESS EQU.

CARD

PREMATURE
RETURN
NNDF = 0
?

ZERO ENDCRD
ERROR FLAG
NNDF = 0

LINE COUNTER
+ 1)

Figure A-1. SUBROUTINE READC (3 of 4)

2-15

CALL PDUMP

CALL NARRNG
ARRANGE &
SORT EQUAT IONS

ANY ERgORS

SET PROC
SEQ-;LAG

CALL PRINZ °
PRINT PAGE
HEADING &
LIST ERRORS

CALL PRINZ
OBTAIN TYPE
& FORMAT OF
T.C. & PRINTS
8/0R PUNCH

SET PROC SEQ.
FLAG = 3

FOR TRANSACTOR
. PROCESSING

CALL PRINZ
OBTAIN TYPE O
T.C. & PRINTS &
OR PUNCHES SAME
W/VAR.* NAME

SET PROC- SEQ.
FLAG = §
FOR INITEATOR
PROCESS ING

SET -PROC

- Figure A-1, SU BROUT]I:IE READC (4 of 4)

CALL PRINZ

OBTAIN TYPE OF
T.C. & PRINTS &
OR PUNCHES SAMS

W/VAR, NAME

SET PROC SEQ.
FLAG = 9

CALL PRINZ
WRITE TOTAL
NAMES
PROCESSED
FOR REF,

CALL EXiIT

FOR SUMMARY
DATA PRINTING

2-16

INTILIZE
PROCESS |
. PARAMETERS |

-

SET PDF
£9

INCREMENT
CARD
COUNTER

DATA IN
1ST HORD

FIRST CARD

SEARCH LM
TABLE FOR
NAME

P

STORE WORD
IN LH
TABLE

Figure A-2. SUBROUTINE NAMEZ (1 of 2)

Do

Y

INCREMENT
LH WORD
COUNTER &
STORAGE
COUNTER

. SET up
LOCATORS FOR
PROCESSING &
STORAGE OF RH
VAR. ON CARD

2-17

Y

STORE ERROR

FOR PRINT|NG
& INCREMENT

LOC & ERROR

COUNT ERS

D

SET PERIOD
& END OF
CARD FLAG

RETURN

ISOLATE A
CHARACTER

REPLACE

SHORT NAME

TERO WITH -
BLANKS

SEARCH
RH TABLE
FOR NAME

A PERIOD

NAME
ENCOUNT ERED
. BEFORE

OPERATOR

o STORE - . Y -
: . - NAME _ _
S o ERROR RETURN
STORE S :
CHARACT €R -

{

' . - INCREMENT
_ ©RH NAME
COUNTER
- INCREMENT .
CHARACTER
COUNT
+ 1

END OF CARD {] GET NEXT WORD

Figure A-2. SUBROUTINE NAMEZ (2 of 2)

2-18

SET LIMITS

ZERO NAME
COUNTER &

INCREMENT
LH NAMES -
COUNTER
AND ZERO
RH COUNTER

l

T

- §NCREMENT
RH NAMES
COUNTER

+ 1

COMPARE

‘Figure A-3, SUBROUTINE NARRNZ (L of 5)

2-19

" INCREMENT

TRANSACTOR

COUNT

-STORE

" TRANSACTOR -

REPLACE
LH NAME
WITH 2ERE

REPLACE
RH NAME
WITH ZERO -

t

CALL
NSORT ‘SORY
TRANSACTORS

*

GET NEW NAME

* LH NAMES

REARRANGE

(TERMINALS)
ZERG COUNTERS
SET LIMITS

INCREMENT
LH NAMES
COUNTER +
FOR STORAGE

/T
o,

Figure A-3. SUBROUTINE NARRNZ (2 of 5)

2-20

REPLACE
BLANK (ZERO)
HITH A 600D

., HORD

i

26RO CELL
WHERE GOOD
WORD WAS

CALL NSORY
SORT LH NAMES
CLASSIFIED AS

INCREMENT
© o LOooK
. COUNTER

LIMIT
REACHED

TRANSACTORS

SET NAME CONT.
& LIMITS FOR -
ARRANG ING
REMAINING
LH NAMES (TERM,)

&

LH
NAME BLANK

INCREMENT
COUNTER
+ 1

COUNTER
= NAME LOC.
COUNTER

Figure A-3. SUBROUTINE NARRNZ (3 of 5)

2-21

REPLACE
BLANK NAME
HWiTH GOOD
NAME

ZERO CELL
WHERE NAME
HAS

INCREMENT
NAME LOC.
COUNTER
+ 1

SET UP NAME
LOC. COUNTER
FOR ARRANGING

RH NAMES
CINITIATORS)

CALL NSORT
SORT
TERMINALS

Figure A-3. SUBROUTINE NARRNZ (4 of 5)
. 2-22 |

S

INCREMENT
NAME &
LOCAT ION
COUNTER + 1

INCREMENT
COUNTER
+ 3

COUNTER

EQ. NAME
LOC, COUNTER

REPLACE

BLANK CELL

WiTH GOOD
NAME

:

ZERO
CELL WHERE
NAME WAS

CALL NSORT
SORT RH

NAMES
CINITIATORS)

RETURN .

Figure A-3, SUBROUTINE NARRNZ (5 of 5)

k=0 -
ZERQ INNER
LOCATION
COUNTER

SET UP OUTER -
LIMIT = NUM
& | = LoC.
~COUNTER

D0 50 I=1, NUM

OBTAIN INNER.
DO LIMIT
NO. = NUM -}

INCREMENT
INNER LOCATION
COUNTER
K=§+dJ

L0C. COUNTER
EXCESS OUTER

Figure A-4, SUBROUTINE NSORTZ (L of 3)

2-24

Loc (x)
NEG.OR ZERO

STORE
Loc (1) IN
TEMP

v

REPLACE
LOC (1) WITH,
LoC &)

{

PLACE
TEMP. INTO
Lot (K)

Figure A-4. SUBROUTINE NSORTZ (2 of 3)

2-25

}NCREMENT.
COUNTER
+ 1

INCREMENT
OUTER
COUNTER

_ Figure A-4, SUBROUTINE NSORTZ (3 of 3)

2-26

2ER0 CODE
& CLASS -
" WORKING

CELLS

e
. Ivee
SET
TYPE _—
=1
CLASSIFY

AS INACTIVE

AN
\2/

Figure A~5. SUBROUTINE NTYPEZ (1 of 2)

2-27

SET .
TYPE
=2
e Lo
e 3 '
SET
w:z | ——
B
1
o
4
CLASSIFY SET

AS ACTIVE TY:E

RETURN

Figure A-5. SUBROUTINE NTYPEZ (2 of 2) -

2-28

SAVE [NPUT
PROGRAM
SEQUENCE

PARAMETERS

FINAL

ERROR
PRINTING

PRINTING

INCREMENT
PAGE EOUNT
+

1ERO LINE
~ COUNTER-SET
UP PROCESS .
COUNTER &
LIMITS

PRINT TITLE
& PAGE NO.

PRINT LIST
OF ERRORS

22}
4

INCREMENT
LINE COUNTER
+2

PRINT OUT
SUMMARY -

TOTAL OF

NAMES

Figure A-6. SUBROUTINE PRINX (L of 4)

+

quul TITLE
PAGE NO,

INCREMENT
LINE COUNTER
+2

A
L/

PRINT SUB
TITLE PER

INPUT
PARAMET ER

- INCREMENT

- LINE COUNTER
. + 2

PRINT VAR,
NAME

FOR REF,
DICT |ONARY

INCREMENT
LINE COUNTER
+2

HRITE NAME
ON PUNCH
TAPE FOR
DICTIONARY

SAVE VAR,

NAME FOR
TIME FIELD
CLASSIFICATION

CALL NTYPE
DETERMINE
CLASS & CODE
OF VARIABLE

Figure A-6, SUBROUTINE PRINX (2 of 4)

SET UP
PRINT
PARAMET ERS -

VAR,
INACTIVE

SET FOR

PRINTING

1 ON
TIME CARD

PRINT VAR,
& TIME CARD
“IN PREP-ED
FORMAT

INCREMENT
LINE CO?NTER
rY

Figure A-6. SUBROUTINE PRINX (3 of 4)

24

L4
Y
WRITE VAR,
& TIME CARD
ON PUNCH
TAPE IN
PREP-ED
FORMAT

Y

HRITE VAR,
NAME ONLY
ON PUNCH
TAPE

~y

LINE
COUNTER
OVER 51

ZERO
———D LINE COUNTER

. 2-31 "

PRINT VAR,
& TIME CARD
IN DIC
FORMAT

' INCREMENT
LINE cot‘mr £R
+

WRITE VAR,
& CODE OR
PUNCH TAPE /.
WITH BLANK
TIME FIEL

HRITE VAR,
& TIME CARD
ON PUNCH
TAPE DTC
FORMAT

LINE ZERO
. COUNTER LINE
OVER 51 COUNTER

Figure A-6. SUBROUTINE PRINX (4 of 4)

2-32

. APPENDIX B

GLOSSARY OF TERMS

1.0 INDEX OF VARIABLES

The followmg is an alphabetlcal hstmg of the terms used in the NAME /TIME Card
Generator Program. _

NAME e ' ' DESCRIPTION
- INAC o _ _ Status flag.
KARD - o Card input buffer. .
KENDS Storage block end, S
KIND - ‘ Time card format flag,
. KODE v i Time parameters key.
"LCARD - o Storage cell.
LHE S LH names count.
LHERR : Storage cell.
NAMCT C Names count.
NAME - ' . Storage block.
NCOM . - Transactor count.
‘NDFG . -~ = - Process start flag.
NLIKE ' Storage block.
NNDF ' Name end flag.
NPAG , ' Page count.
NTES ' _ ' * Name in process.
- IND ‘ Transfer indication.
NCT . Print line count.

NEQF Equations in process.

-

2.0 DEFINITIONS .

" NAME DESCRIPTION

INAC " .Used as a flag to signal variables whose time cards
‘ o are to be coded inactive. The variable name is tested
for presence of specified hardware code letters. If
a match is found, the flag is set to one. For all other
hardware codes, the flag is zeroed.

- 2-33

LHE

LHERR

NAMCT

NAME

DESCRIPTION

Fourteen word input buffer for temporary storage of
data read from the control and equation cards.

Not used.

- Used as a flag to signal the type and format to be

used in preparing time cards. If time cards are

to be used directly with the Preprocessor Program,
KIND is set to zero. If time cards are to be used

with the DT&C program, KIND is set to one., If
individual time cards are to be prepared for use with

" both the DT&C and Preprocessor Programs, KIND

is set to two. Value to be assigned is signaled by
keywords on the *EQUATION control card.

Used as a flag to signal which hardware code and

| ~which group of prespecified pickup and dropout times

are to be assigned to a variable's time card. The
variable name is tested for the presence of prespecified

“ hardware type code letter. If a match is found, the
" flag is set to a value corresponding to the particular

code letter. If no match-is found, the flag is set to zero.

Used to store the sequence number (position of the
card in the equation card deck) of an equation card
which was found to contain a left hand name that had
been encountered previously.

 Counter for counting and storing.

- .Storage array for storing up to eight (8).left hand

names, should names be inadvertently duplicated
or mispelled. :

Multipurpose counter used first to count the number
of unique names encountered on the RH sides of the
equations, second to count the number of initiators,
and third to store the total number of names processed.

Storage array for storing initially the unique list of

names encountered on the RH sides of the equations,
and later to store the list of names found to be initiators.

- 2-34

NAME .

~ NCOM
NLIKE -

NDFG

- NNDF

NEQF °

" DESCRIPTION

Common location for storing the total number of

_variables found to be transactors.

Storage array for storing the list of names of
variables found to be transactors.

Entry flag used after initial entry to signal sub-
sequent entries that storage registers and counters

" have already been initialized. -

Flag to signal end of current equation card field
(either 72 or a period) has been encountered.

Flag used to signal that the equation card deck is
being read and processed., The flag is setto 1

when the *EQUATIONS' control card is encountered,
and re-zeroed when the '*END EQUATIONS' control
card is encountered. :

2-35

'SECTION

3

DNS/ATOLL INPUT CONVERSION AND PUNCH PROGRAM

CONVAIR DIVISION OF GENERAL DYNAMICS COBPORATION

3

- DNS/ATOLL INPUT CONVERSION AND PUNCH PROGRAM

_AUTHOR: |

PURPOSE:

RESTRICTIONS:

A. R. Stone

Convair division of General Dynamics

To utilize the Discrete Network Simulatidn (DNS) Programs
for test procedure verification, it is necessary to derive
driving functions for use with the Simulation Program from

the ATOLL test procedure itself. This program uses the
following techniques to simplify the generation of input data.

1. Read the ATOLL test tape and identify all necessary
data required for DNS input.

2. Convert this data into a format that will be compatible
with DNS. -

3. Punch IBM cards containing the DNS driving commands.

4. Provide necessary written instructions to insure manual

inputs are accounted for in DNS simulation.

1. The program must run on an IBM 7094 with IBJOB

systems capability.

2. In addition to system input and output, two mé,g'netic
tape units are required for BCD tapes.

3. A maximum of ten tests may be processed during
one computer run.

4. The program was designed for use with A’]_.‘OLL
card image provided by Boeing or IBM.

STORAGE: -

" TIMING:

. USE:

The program, including files will start at location 02720
and continue through location 23253. It contains 8 sub-

- routines as follows:

1. CONTRD Driver

2. KATLT General ATOLL card image processing
3. KATRG : Variable and case, identification

4. KONVRT ATOLL step identification

5. NBRANZ Test procedure branch 1dent1fmation

6. NIDEX IDA. No. conversion

7. READCD Control card reading and interpretation
8. TIMEZ Processing of time field on ATOLL tape

Prdgram will genei‘ate input data for the DNS Simulation

Program at approximately 1000 lines per minute. Each

line (or card) represents either an input equation or a control
card. The output per minute increases as the number of
inputs associated with an ATOLL instruction increases.

A typmal operation deck set up for using this program would
be as follows:
$JOB .
Binary program deck
$DATA
Job specification card
7/8 (EOF)

Job specification card

Col. 1-2 Zero or blank 4

Col. 3 Zero or integer 1 (1, scan times to be used)
- Col. 4-5 Zero or blank

Col. 6 Integers 1 or 2 (1 = IBM, 2 = Boeing)

Col. 7-8 Zero or blank

Col. 9 Integer 2 or blank (2, List on Save Tape)

Col. 10-12 Number of IDA's to be processed - right

adjusted to Col. 12,

Col. 13-72 IDA numbers prefixed with "DA" from IDA

e.g. DA5002 or blank.

 METHOD:

.‘,(’.

'Taﬁes Requirements

Fortran Logical System Function Tape .
8 A5 ATOLL test proc.

11 : " B6 BCD Save (in lieu
' : ' of punch cards)

The input conversion and punch program processes
ATOLL test procedure card image tape records. The

‘records are read and processed case by case until an end .

of record is encountered. The first case consists of the
data starting with the initial ATOLL input (DISO or SEMJ)
operator encountered, and ending with the first succeeding
ATOLL "'Scan" operator. Each succeeding case starts with
the first input (DISO or SEMI) encountered after a preceeding

. "Scan" operator, and ends with the next "Scan" operator
.encountered. The combined ATQLL step and substep

numbers at which each new "first input" occurs become the
unique identifiers for signalling the start and end of each

case in creating the DNS inputs. (In the succeeding comparator
program, these unique step-substep numbers are used to
correlate the simulation results with the ATOLL predictions

on this tape). Any input data contained between these "case
controls" is identified, converted, and sequenced to create

the inputs for driving or stimulating the DNS model.

1. The control card is first read to determine the format
of the ATOLL input tape (IBM or Boeing). The type of
output to be created (tape or punched cards), and the
number and names of the test procedures to be processed.

2. The "IDA's yet to be processed" counters and control
flags are set up. If IDA's remain to be processed,
proceeds to 3. If no more IDA's left, cleans up and
exits from the machine. '

3. The file flag and entry flags are reset for the sta.rt
of the test procedure.

4, Each ATOLL record (14 word) is read, one record at
a time. I the "file found" ﬂag has been set, the processing
- skips to 5.

g

5.

A. Checks for current IDA number or name in IBM
" or Boeing format depending on setting of "input

format flag". When correct IDA is encountered,
a "file found" flag is set to bypass this portion of
the program, and a "control flag” is set to normal
value. If correct IDA number is not found in terd
names records, the "control flag" is set to
"error value", and processing is terminated.

If IBM format, skips to 6.

A. If Boeing format, checks for presence of a block
operator. If none, skips to 6.

B. If a block operator is found, processes current
block number as set by “output list" flag, and
returns to 4.

Checks for px.'esence of an END operator. If none,
skips to 7.

A. If an END operator is found, processes the END
record as set by the "output list" flag, and cleans
up for return to 2.

Checks for presénce of any one of a preset list of ATOLL
operators. If one is found, skips to 8. ’

A. If miscellaneous operator, checks and updates
step-substep number if required, and returns to 4.

Updates the step-substep number and proceeds to

appropriate sections as follows:

A, If ATOLL operator is a DISO, goes to 9.
SEMI, goes to 12.
TEST, goes to 13.
SCAN, goes to 11.

If ATOLL operator was a "DISO1" or "DISO0", sets

" a value flag and checks to see if this is the first new
input- encountered.

'A. If not the first, skips to 9C.

3-4

L=

10.

A

. C.

11..

B.

D.

If first new input, sets "new start" flag on and
processes a new DNS *STEP record for this
step-substep number.

If "DISO input" flag on (a "DISO" has been
encountered before) skips to 9E.

If this was first new DISO operator, processes

‘-new DNS clock input time for start of case, and

sets "DISO input” flag.

If no time field data encountered, zero's time

flag and skips to 10. .

If timing data encountered, sets 'time flag",
converts time to binary or storage, and proceeds
to 10. :

Identifies the discrete outs listed in the variables field,
checks value flag, and formats and stores the DISO
names, values, and current DNS clock time in print
storage. If "time flag" is off, skips to 10B.

I "time flag" is one, also stores DISO names and
opposite values in temporary storage.

If end of data or end of variables field, returns
to 4. :

If continuations, return.to 10.

If "scan time flag" is off, skips to 11B.

A.

I time field data is present, converts time to
binary for scan storage.

If no inputs have been encountered, prints out
message with step and substep, and skips to 4.

If "new case in progress' flag is on, processes
"print storage" inputs in DNS format.

If "SEMI flag" is off, skips to 11F.

| If "SEMI flag" is oh, processes "print SEMI"
~ buffer in DNS format, and zero's "SEMI flag".

3-5

12.

) A._

13.

If DISO "time flag" is off, skips to 11H.

If DISO "time flag" is on, updates DNS clock time,
transfers DISO names and values from temporary
storage to print storage with updated times, zero’s
"tlme flag'" and returns to 11C.

If "scan time" flag is off, ends case and skips -
to 4.

If "scan time" flag is on, updates DNS clock time
by adding scan duration tlme, ends case, and
returns to 4.

If ATOLL operator was a SEMI instruction, checks to
see if this is the first new input encountered If "new
start" flag is on, skips to 12B.

E.

If "new start" is off, sets "new start" flag on and

. processes a new DNS *STEP record for this

step-substep number, processes the variables.
field in DNS input format, increments DNS clock
input tlme, and returns to 4.

If "DISO input" flag is on, skips to 12D.

If "DISO input" flag is off, and no predictions

have been encountered, process variables field

of record into DNS format, and return to 4.

If "PRINT SEMI" buffer is already full, skips to 4.

If "PRINT SEMI" buffer is empty, store variables
field in print SEMI, and return to 4.

If ATOLL operator is a test instruction, checks to see if
"new start" flag is on. If "new start" flag is on, skips
to 13B.

A,

If "new start" is off, sets "new start" flag on,
and processes a new DNS *STEP record for this
step-substep number before proceeding.

Writes out the branching data in the variables

field, and returns to 4.

3-6

OUTPUT FORMAT:

Figures 3-1 and 3-2 illustrate the type of printout .

generated by the ATOLL to DNS Conversion and Punch ;
Program. The numbers of the IDA's for IBM tape and TP's
for Boeing tapes will be listed as shown in Figure 3-1. Only
one IDA is listed in this example but if additional IDA's were
being processed they would be listed at this point also. For
each IDA list a separate printout will be made similar to the.

~example shown in Figure 3-1.

The word *NAME and IDA 1003 is listed as extracted from
the IBM tape for reference and is preceeded by a single
asterisk. The test procedure step number is listed following
a single asterisk. Cards for these single asterisk comments
are punched but are handled by the DNS Simulation Program
as comments and are to be used for reference only.

Three asterisks indicate a manual check of the test is to be:
made to ascertain‘the mode of simulation corresponds to

mode of test and that appropriate inputs are added as required,
The actual inputs are listed without any preceeding asterisks
as shown, DO34 =1 at 50. ’

Punched cards that require removal from the input card deck
are "Input Requirement" type comment cards. Inset 7 card
columns the comment "INPUT REQ-T" (requirement) will
appear followed by a comment. The sixth line of the printout
is shown in Figure 3-1 which calls the users attention to the
fact that at this point in the test procedure, an input not
automatically generated, is required to start power supply
6D100. Investigation reveals that in this case it is a manual
push button. Therefore the comment card is removed, and a
new card inputting the required push button will be inserted
in its place.

A sequence number is assigned to each card that is punched

" as shown in'Figure 3~1. In event that any such inputs require |

more than one card to replace the comment card, it would

‘be advisable to insert all changes to the Update Program to

ensure a new sequence number, Present DNS/simulation
requirements do not merit a change from punched card driving

. inputs. The input conversion and punch program was written

with future applications in mind where tape inputs would be
a necessity or beneficial.

s gme o avn o e e

umexSoxd uOISIOAUOD ndur ‘Sunsy Jndurfenuew pue paeo yound °T-¢ oanSig

PPN

R R -

S 1t bas 440 MS ¥Md LNdLNB N¥NL 1-83¥_1ndNI
R o»__wwmm o | 000900 @N d31§e .
& b3S Ng_MS 378VN3 1v800109 1-C3¥_1NdNI
M 8 pas 000500 @N d3ise =
L pas NZ HILIMS ¥3MBd 10dINE 0O1A9 1-03¥ 1NdNI
| 9 das | | 00C%00 BN d3ise =
| & b3s NGLING L¥VLS DOTA9 SS3IYd 1-83¥ _1NdNI :
y___03s 000€00 * 'ON d3ise . .
€ bas * 05 v 1= €80
B SINGNI V¥1X3 ¥p4 ¥D3IHD -OIWIINNZONI 8O0Z0O d3LS O1 HONYYE HIIM 1S31 sas
” 2 03s ~ | L 000200 N d3iSe »
1 bas €00SVQ1 3WVNe .
x;,(:ia;,“--rmz.ufflz, €005VaT oN 39039994 1531 1181V

T .
R}

1. az wc<m z<mo&ma HONNd oz< zsumxw>zau indNI mzo g1 3dvl ._._ahq ~:<>zau\mu~:qz>o .~<mw7mw.,

€00SvaT

SY3I8WNIN 3¥NA3I2Ud ._.m.w._. Wal

s

3-8

A summary of each IDA is listed. Each "CASE" is from
step number to the last DO input prior to the next step

number. The number of cards punched are totaled. The
*END data card is required to make program compatible

with the Update Program and will only appear after the
final IDA, if more than oneis processed. Figure 3-2 represents

the final portion of the test procedure generated inputs. The
word *END signals the termination of the data for the DNS

simulation.

‘wea3oxd uoIsI9AUOD ﬁ&.&. ‘18103 ®YRp puE pxeo young ‘g-¢ oanSrdg

- SINdN1 ow.:mwzmc AVY92¥d HINNG ANV zmew>zsu 1NdNT 1181V/7SNa

vivgd GON3e

%L6

GEZ = S3ASVI 40 UIBWNAN

= SOY¥VI 48 YIGWNN

m00m<o~ YIGWAN 3YNA300Y¥d 1S31 - AUVAWNS

g

: vl6 D3S ED .
€16 D3S SONILNIA LBN SI NSd AJ1¥IA 1-t3¥ 1NdNI

2.6 D3S) *QsL82 1V 0 = sL290
_1.6_03S . eocL82 AV I = 51280

0L6_ D3S cocL8Z IV 0 = %1280

696 035 , t0¢982 LV T = 91200

L | mhaazu <¢hxm ¥g4 ¥D3HD -QIWILNNZING cc»mmo 4315 21 HONVYG HLIM 1531 wxe
896 b3S 005550 ON d3ise %
- 196 b3S ~0c982 IV T L88a
_ 996_03S_ 002550 ON_daisw .
g9 F ‘ossez v 1= 8900, -
496 035 . _0O0SEO N adise . J

_ €506VaT ON 39n0390¥4 1531 IV

14

e = s e et e e e vt

.sz.muaa WY¥90¥d_HONNd ONY NZTS43ANEGD INGNT SNG 31 34vi 1181V STVANG/S STAVNAG V83830

3-10

*

APPENDIX A

PROGRAM FLOW CHARTS

ks

3-11

 PREGEDING.E

- REWIND -
ATOLL
TAPE

i

1ERO SAVE
TAPE FLAG .

CALL READE
READ A CARD
GET. TYPE &
SET "LiST"™

SAVE
TAPE1FLAG

REWIND -
SAVE TAPE -

i

gAﬁﬁﬁ%ﬁﬁémﬂm

SET PROC.
CONTROL FLAG
= 1 FIRST PASS

"1ERO
COUNT ERS

{NCREMENT
TEST PROC,
COUNTER
+ 1

!

INCREMENT

PROCESSING -
COUNTER

+1

!

UPDATE

NUMBER

CALL KATOL
LOCATE 1DA
NO. ON

TAPE

LOCATED IDA

CALL KATOL
PROCESS
TEST .
INPUTS

 Figure A-1. SUBROUTINE CONTRD (L of 2)

- 3-13

PRINT

RENIHD END DATA

CALL PDUMP

CALL EXIT

SAVE
TAPE FLAG ON

WRITE END
DATA ON . L
SAVE TAPE . 5

e

REWIND
SAVE TAPE

&

" Figure A-1., SUBROUTINE CONTRD (2 of 2)

3-14 -

t ENTRY ’

Y
SAVE ENTRY
FLAG VALUE
K=KTRL

ZEROD CASE
FLAGS &
HORKING CELLS

"ZERO PROGRAM
FLAGS '

~ READ ATOLL
TAPE
RECORD

Figure A-2. SUBROUTINE KATLT (L of 23)

- 315

. - " La e T e W oaey s e i tytel sk, o mEe s oS
PRI TR SIS SN, SRR PRSI WL { S PR BRIy SRISAR A Myt~ SRR

IS 2ND
HORD "NAME™

" 1BM TAPE
FLAG ON

8TH WORD
IDA NUMBER

STORE 1DA -
NUMBER IN KAFG
START PAGE
NUMBERING

PRmL PAGE
108 NO.

Figure A-2. SUBROUTINE KATLT (2 of 23)

' 3-16

INCREMENT
LINE & SEQ.
COUNT
PRINT IDA

&
SEQ.NO,

INCREMENT
LINE & SEQ.
* NUMBERS

SAVE

- TAPE FLAG
ON

NUMBER ON
UNCH TAPE

y

NUMBER ON
SAVE TAPE

D

ZERG WORKING

" FLAGS -FOR
NEXT PASS:

~ RETURN ‘

Figure A-2. SUBROUTINE KATLT (3 of 23)

3-17

_ IBM
FLAG ON

2ND HORD
BOTB

g

" SAVE WORD
8 (BLOCK NO.)
PRINT BLOCK

&
SEQ. NO.

SAVE
TAPE FLAG
ON

Figure A-2.. SUBROUTINE KATLT (4 of 23)

3-18

HRITE 1D&
SEQ. NO, O
PUNCH CAR

HRITE IDA
3 SEQ. NO.ON
SAVE TAPE

ZERO 1D

STORAGE CELL
~ KAFg

|

Figure A-2. SUBROUTINE KATLT (5 of 23)

3-19

INCREMENT
ALL COUNTERS

TAPE FLAG
ON

Y

MRITE END ON
SAVE TAPE

WRITE END ON
PUNCH TAPE

SET CASE STATUS

FLAG TO VALUE OF|
' 2

Figure A-2. SUBROUTINE KATLT (6 of 23)

3-20

. ND WORD
ON RECORD ONE
OF 9 DATA

\ WORDS

CALL KONVRT
UPDATE. BLOCK
STEP DATA .

ALL 9

__HORDS CHECKED

-CaLL KONVRT
UPDATE BLOCK
STEP DATA

 Figure A-2. SUBROUTINE KATLT (7 of 23)

3-21

SET DO
YALUE FLAG
10 -1

eD~

G

VAR
\1s_/

Figure A-2, SUBROUTINE KATLT (8 of 23)

3-22

INCREMENT
SEQUENCE
COUNT

INCREMENT -
LINE COUNT
+2

SAVE
TAPSNFLAG DI LOCATED

&

WRITE SEMI - HRITE SEM)
MESS ON . MESS ON
PUNCH SAVE

TAPE TAPE

Figure A-2. SUBROUTINE KATLT (9 of 23)

3-23

18K
FLAG ON

¥

" PRINT BRANCH
ENCOUNTERED
MESS

PRINT TEST
. ENCOUNTERED
MESS

INCREMENT
LINE COUNT

Figure A-2. SUBROUTINE KATLT (10 of 23)

3-24

CHANGE
iN SUBSTEP

vh

SET PROG.
SEQ.DIRECTOR
103

AhY
>

Y

" SET DO
FLAG 10 1

CHANGE
IN
SUBSTEP

SET PROG.
SEQ. DIRECTOR T0
ONE & INCREMENT

SEQ. COUNT,.

" INITIAL STEP
CASE FLAG
SET 70 ONE

Figure A-2. SUBROUTINE KATLT (11 of 23) ‘

3-25

jit)

PRINT
NEW STEP
NUMBER

INCREMENT
LINE COUNTER
+3 »

SAVE
TAPE FLAG
ON

HWRITE STEP HRITE STEP
& SEQ. ON & SEQ, ON
PUNCH TAPE SAVE TAPE

" Figure A-2. SUBROUTINE KATLT (12 of 23)

3-26

gt

DO FLAG ON

|
LOCK TIME
LESS THAN
MAX, TIME

CLOCK TIME
REDUCED
‘BY 15 MIN,

'

KWD = 1

e
"

CLOCK
IME GREATER
PREV. TIME

'

INCREASE
CLOCK TIME
BY 50 MS,

~ Figure A-2. SUBROUTINE KATLT (13 of 23)

3-27

.REPLACE
PREV, TIME
WITH CLOCK

TIME

l

SET DO
{NPUT FLAG =1

6TH WORD
BLANK

7TH HORD
BLANK

Y

D1 VALUE
SET TO "ov

Di VALUE
SET 1O "1®

/P
O,

Figure A-2. SUBROUTINE KATLT (14 of 23)

3-28

CALL
TIMEX PROCESS
TIME DATA

MI{M = KTIM

2ERO TEMP
TIME CELL

Figure A-2. SUBROUTINE KATLT (15 of 23) -

3-29

CALL KATRE
PROCESS
ATOLL VAR,

-END.
OF VARIABLE

SET DI Loc. | ZERO DO,
- . » , 01 & VARIABLE
FLAG TO 1 .| HoRKiNG FLAGS

Figure A-2. SUBROUTINE KATLT (16-of 23) -

3-30

6TH WORD
BLANK

'SET SCAN

TIME T0 O
SCAN TIME
SET 10 TEMP
TIME VALUE .
- ZERO TEMP
 THME CELL

o . Flgue A-2, SUBROUTINE KATLT (L7 of 23)

3-31

DO IN WORK

D} LOC,
FLAG ON

SAVE SCAN
SUBSTEP NO,
FROM WORD 1

l

PRINT =
STEP & SCAN
AT SUBSTEP

Figure A2, SUBROUTINE KATLT (18 of 23)

3-32

T

SR R

- INCREMENT
LINE COUNT

SET INTERN
CLOCK TO
SCAN TIME

2ERO TEMP
SCAN TIME
CELL

r

ZERC DO
SIM, CASE,
Di & INPUT

FLAGS

!

ADVANCE
. INTERN CLOCK
50 MS.&
INCREMENT
CASE CLOCK +1

* Figure A-2. SUBROUTINE KATLT (19 of 23)

3-33

DO IN HORK

TITLE PAGE
INCREMENT
LINE, PAGE &
SEQUENCE COUNT

R

PRINT
DO INDICATOR

INCREMENT
LINE COUNT

TAPE FLAG
ON

SAVE

PRINT
DO NUMBER
=1 A7
TIME

INCREMENT
LINE COUNT

'.
HRITE HRITE
PUNCH TAPE

SAVE TAPE

' Figure A-2, SUBROUTINE KATLT (20 of 23)

3-34

&

SAVE SEMI
TAPE FLAG ENCOUNTERED
ON

Y
HWRITE 00 WRITE DO
INPUT INFO- INPUT DATA INCREMENT
ON PUNCH ON SAVE SEQ. NOo +1
TAPE TAPE

WRITE 6
SEMI _MESS
ON . PRINT
TAPE

FNCREMENT
LINE COUNT
2

Figure A-2. SUBROUTINE KATLT (21 of 23)

3-35

SAVE
TAPE FLAG
ON

HRITE
SEMI MESS
ON SAVE
TAPE

ZERO SEMI
MESS BUFFER
CELLS

!

SET SEMI
LOCATED FLAG
10 ZERO

ANY REPEAT
Do's

INCREMENT

JNTERNAL
CLOCK BY TIME
FOUND ON ATOLL

Y

TRANSFER
00 T

0
WRITING CELL
WITH STATE
OPPOSITE

!

" INCREMENT .
D0 CDCNT
& ZERO SEM)
FLAG

/i
N,

Figure A-2. SUBROUTINE KATLT (22 of 23)

3-36

4

. INCREMENT .
" SEQ. NO. +1

CWRITEG
"SEMI MESS

INCREMENT

LINE COUNT -

STORE SEMI
MESS IN TeEMP
BUFFER

Y

INCREMENT
INT. TIME
CLOCK 50 MS.

. WRITE SEM|
MESS ON

SAVE TAPE /-

SET SEM)
10 1

LOCATED FLAG

REF. [NPUT AT
TIME FOR WRITE =
TO NEW TIME

Figure A-2. SUBROUTINE KATLT (23 of 23)

3-37

1 cer atoLL woro

INCREMENT

CHARACTER
& COLUMN
COUNTERS

{SOLATE A
CHARACTER

SET UP
FOR CASE

AND TURN
CASE FLAG ON

ZERD
PROCESS ING
FLAGS

1EROD .
CHARACTER

COLUMN & WORD

COUNT ERS

CHARACTER
COUNT = 6

SET

CONT INUAT 10N

FLAG = 1§
(KONF)

SAVE CHAR.

WORD
~KNUM=

FOR NAME -

i

TURN NAME
{N PROGRESS
FLAG ON

ERO

2 -
CHARACTER

COUNTER

Figure A-3. SUBROUTINE KATRG (1 of 3)

TURN ON

CONT INUE B

FLAG

STORE
UNUSED
CHARACTERS
& ZERO

s
CONT INUE
FLAG ON

N

" TURN ON
" "END DATA
FLAG

REMOVE

FROM NAME

ADD PREFIX DO

FiLL REST
OF NAME
WITH BLANKS

—

TURN ON
MINUS FLAG

3-39

00
ENCOUNT ERED
BEFORE

- Figure A-3. SUBROUTINE KATRG (2 of 3)

INCREMENT
" CINPUT
TIME + 50

e

. STORE
" DO WITH NEW
_TIME & VALUE

UPDATE
COUNT ERS
- & REGISTERS

TIMING
DATA- WITH
00

- LERO NAME
HORKING
BUFFER CELLS

v STORE DO .
IN "MADO"
WITH OPPOSITE
VALUE

ZERD SIGN FLAGS

~

RECORD
PROCESSING
COMPLETE

Figure A-3. SUBROUTINE KATRG (3 of 3) |

3-40

s
.
ZERO FLAGS - o UPDATE
EAR A » . STEP NO.
V‘CL ¥ C 7 _ L En . -
r.aé?°%3{‘ of ' | ' MEOATE ’ ‘
.OF -] . ‘ PRINT WORD :
FIRST WORD - 4 o CULSTEP) ‘ ‘ gflssggszgg
NEW SUBSTEP
J 1
NOT BLANK]
1
Y
- UPDATE | 1ERO
SUBSTEP WORD SUBSTEP
FLAG

~ RETURN

Figure A-4, SUBROUTINE KONVRT (1 of 1)

3-41

LOAD MQ & AC
iTH 7TH & BTH
HORDS [DA NO.

=

SHIFT ONE
CHAR, 70. LEFT
DROPPING *1*

STORE
NO, MINUS
i* IN 77H
HWORD ONLY

L ReTRN

Figure A-5. SUBROUTINE NIDEX (1 of 1)

3-42

PLACE
774 & 81H HORD
IN AC & MQ

SHIFT
INTO POSIT ION
FOR TEST,

*B' FOUND

: STORE
.SUBSTEP NO. IN
IN 71H WORD

.

Y

STORE_ -
ZERD IN 77
WORD

-3-43

Figure A-6. SUBROUTINE NBRANZ (1 of 1)

ENTRY

SET FLAGS

IS TAPE BOEING

SET TAPE
FLAG ON
FOR iBM

ZERO
TAPE
FLAG

PRINT
NO. oF {DA's
FROM CONT,
CARD

_Figure A-7. SUBROUTINE READCO (1 of 1)

3-44

INITIALIZE
COUNTERS - -
& REGISTERS

I

SET UP WORD
IN ATOLL RECORD)
FOR PROCESSING

TURN ON TIME
iN PROGRESS
FLAG

- CHAR. IN PROG.

SHIFT CURRENT
TIME 1 CHAR,
LEFT & ADD

k|

ISOkATE'
CHARACTER -

CHAR .
COUNT 12

SHIFT CURRENT

TIME 1 CHAR,
LEFT & ADD
- 1ERO

SET TIME -

gl IN PROGRESS

FLAG = 9

TIME
IN PROG.
FLAG ON

* ZERO TIME
* IN" PROGRESS
FLAG

CONVERT
TIME T0
BINARY

pi’gu;e A-8. SUBROUTINE TIMEX (L of 1)

3-45

| orEcEDING PAGRBLANKING

APPENDIX B .

GILOSSARY OF TERMS

1.0 INDEXOFVARIABLES .

The followmg is an a.lphabetmal 11stmg of the terms used in the Input Conversion

and Punch program. :

NAME

IBMF -
IDA
INTIM
JOPT
KADO
KADT

KADV

.. KAFG

 KAWDS -

KBUF
KCAS
KDIF
KDOF
KDOS
KDIF
KENDF
KENF

, KINF

, KNUF
KNUM
- KONF -
KRDF
KSEMI
- KSEQ
KTIM
KTRL
~ KWD

3-47

DESCRIPTION

Format flag.

Test number.

Input time buiffer,

Scan timing code,

DO list.

Input time,

Input value.

ATOLL file flag.
ATOLL input buffer.
SEMI 1/0 buffer.

Case count.

Spare.

DO value flag.

Case input count.

DO time flag.

ATOLL end data flag.
ATOLL DI found flag. -
ATOLL DO found flag.
ATOLL name process flag.
ATOLL DO name.
ATOLL record continue flag,
ATOLL case flag.

SEMI found flag.
Sequence count.

Time transfer word,
Processing control flag,
Time format selector.
Tape format flag.

" NAME
LCT
LIST .

.. LSFG -

- LSTEP

. LSTIM

" MADO

MADV

. MDOS
. MNT

- MSCAN -

- MTIM
MXTIM
NAM

" NBLOC
NBRAN

‘NCAS - -

NEXT
_NID
NPAG
NSFG
NSTEP
- NXTB

2.0 DEFINITIONS .

NAME

DESCRIPTION

Print line count.
Save tape flag.
Scan time flag.
Step number.
Case start time.
Cycled input list.
Number cycles,
Cycled input count.
Number IDAS in run.
ATOLL scan duration.
ATOLL DO duration,
Time correction factor,
- Test name.
Block number,
NBRANZ call flag.
IDA end flag, ‘
Test word, -
IDA number.
Page count,
' Case flag.
Step number.
. Search count.

DESCRIPTION

A word in common block/ISPEC/ used by the

- program as a means of selecting alternate groups
- of instructions for processing certain ATOLL

format or style differences between Boeing and
IBM test procedures. The flag is set (by means
of the control card) to 1 if the ATOLL tape to be
used is an IBM tape. If not, the flag is zeroed.

A 10 word array in common block/ISPEC/ used to
store any (up to 10) ATOLL test procedure names
which are to be processed. The names (ID's) are
stored here as 6 character BCD names exactly as

.they appear in the data field of the control card.

3-48

" INTIM

- ISPEC

JOPT

KADOS

. KADV

A word in common block/MCAS/ used to store

the current input time (simulation clock time)
which will be assigned when a variable's input
equation card is processed.

A common block of 14 words used to store the
contents of the first control card, The array
contains JOPT, KYPE, LIST, MNT, and 10
IDA locations. '

~ A word in common block/ISPEC/used for setting

a value into LSFG if the timing data on ATOLL
"SCAN" records is to be processed. The value

" is obtained in subroutine READCD when the

control card is read,

A 20 word array in common block/KADOS/ used .

for storing the names of any ATOLL discrete
oufputs-encountered when processing ATOLL
"DISO 0" or "DISO 1" records during a case.

The prefix "DO" is stored as two BCD characters
left adjusted in the word. The numerical DO
designation (from 1 to 4 BCD characters) is left
adjusted to the prefix and the remainder of the -
word is filled with blanks. The array is zeroed
at the start of each case. - ‘

: 'A common block containing counted KDOS, 20 KAm

locations, 20 KADV locations, and 20 KADT
locations used for storing ATOLL discrete output
data during a case.

A 20 word array in common block/KADOS/ used

for storing the simulation clock (input time) to be
associated with a particular discrete name in array
KADO. Each word is in binary format, and is zeroed
at the start of each case.

" A 20 word array in common block/KADOS/ used

for storing the BCD value to be associated with a

- particular discrete name in array KADO. Each

word used is in the format " =1 AT" or " =0 AT",
and is zeroed at the start of each case.

3-49

~ .NAME

KAFG

- KATRL

KAWDS

 KBOT

.~ KBUF
" KCAS

KDIF

KDOF
" KDOS

A word in common block/KATRL/ which is set in
~subroutine KATLT if timing data is encountered on

DESCRIPTION

A word in common block/KNTRL/ used as a

flag to signal that a particular test procedure is
in process on the ATOLL tape. It is set when the
particular test procedure name (NID) has been

\‘ located on the ATOLL tape, and zeroed out when

a subsequent ATOLL "END'" record is encountered.

A common block containing 8 words or flags used
for controlling the reading and processing of the '
ATOLL tape. It contains KRDF, KONF, KENDF,
KDOF, KDIF, KDTF, KNUM, KNUF. -

A common block containing 14 words used as the
input buffer for storing each 14 word ATOLL tape -
record as it is being processed.

*

A test word in subroutine KATLT used for identifying

ATOLL "BOTB" records.

A 5 word array in subroutine KATLT used for
temporary storage of the variables field of ATOLL
"SEMI'" records. It is used in conjunction with
internal flag KSEMI, and is zeroed after use.

A word in common block/MCAS/ used as a counter
for storing the current number of ATOLL cases
which have been processed. It is zeroed at the
start of each test procedure.

A spare location in common block/KATRL/ reserved
for program expansion. :

A word in common block/KATRL/ used as a flag

to signal the value of the current ATOLL discrete
output associated with encountered ATOLL

DISO 0 records, and is set plus for DISO 1 records.

A word in common block/KADIS/ used as a counter
for storing the number of ATOLL discrete outputs
encountered during a case. It is zeroed at the
start of each case.

1

3-50

 NAME | | DESCRIPTION

an ATOLL "DISO 0" or DISO 1" record, Itis .

used to signal that the DO associated with that particular
ATOLL operator is a "pulsed" input, and will
‘therefore require an additional "restoring" input
equation. The word is zeroed after the record has
been converted and processed.

KEND . : A test word in subroutine KATLT used for identifying
o - ATOLL "END" records.

" KENDF "~ . A word in common block/ KATRL/ used as a ﬂag to
> signal that all names associated with a particular

ATOLL "DISO 0" or "DISO 1" record have been

processed. It is set whenever an ATOLL "end

of variable field" is encountered or signaled.

KENF Aflag in subroutine KATLT used to indicate that an
: - ATOLL "DISI 0" or "DISI 1" record has been
encountered. It is zeroed at the end of each case.

KINF - An internal flag in subroutine KATOL. It is set to
: ' - 1 if an ATOLL "DISO 0" or "DISO 1" record is
encountered. It is tested when a case end is ‘
detected to determine how the current case is to
be processed. It is zeroed at the start of a case.

KNAM - Atest word in subroutine KATOL used to 1dent1.fy
' : ~ATOLL "NAME" records.

KNT " An internal counter and test word in driver program -
'~ CONTRD used to keep track of the number of test -
- procedures remaining to be processed. It is set with
the number from control card 1 (MNT); and tested
- before each test procedure is started. (If zero, the
program exits. If not, KHT is decremented and
a test procedure is set up for conversion).

KNTRL A common block containing 5 process control flags
(KTRL, IBMF, NSFG, KAFG, LSFG).

KNUF- ‘A word in common block/KATRL/ used as a flag and

temporary. character storage cell during the identifica-
tion of names encountered in the ATOLL variables -

3-51

b4

NAME

-~ KNUM

KOLD

KONF
KRDF
KSEMI

| 'KSEQ

DESCRIPTION

field. It is set in KATRG when any of the .

characters (0 thru 9) are detected, and zeroed
whenever any other character is encountered.

A word in common block/KATRL/ used as
temporary storage while building up the numerical
name designation for discrete predictions encounter-
ed while processing the variables field of ATOLL

"DISO 0" or "DISO 1' records. The word is formatted

in BCD, and will contain a 4 character numerical
discrete designation right adjusted and zero filled.
The word is reformatted before storing in array

'KADO.

A location in subroutine KATRG used as temporary
storage for the current word in the ATOLL varlables '
field being processed.

A word in common block/KATRL/ used as a flag to -
signal that the current ATOLL variables field is to -
be continued on the next ATOLL record. It is set

. in subroutine KATRG if a continuation character is
~encountered, or no field termination characters are

encountered. It is zeroed before each new variable

~ field is processed.

A word in common block/KATRL/ which is set in
subroutine KATRG during the first entry in a case.
It signals any subsequent entries that initialization

_of controls for discrete output data has been

completed. It is zeroed at the end of each case.

A word in subroutine KATLT used as a flag to signal
that the variables field of an ATOLL "SEMI" record
has been stored in array KBUF for subsequent

- printout at the conclusion of a case. Itis zeroed

at the start of each case.

A word in subroutine KATLT used as a counter for

- storing the sequence number assigned to each input

card processed by the program.

3-52

U NAME . ' DESCRIPTION

KTIM . - A.word in common block/MCAS/ used as temporary

o storage by subroutine TIMEZ during the processing
of the timing data encountered on ATOLL records. -
It is used to store the timing information converted
to binary format, and is zeroed after return to the

- calling routine, - '

'KTRL . A word in common block/KNTRL/ used as a

' o processing status flag. Its value is returned to
CONTRD as 2 for all normal returns. If its value
is 10, a processing error has been detected, and the
program is set to dump and exit.

"-KWD "~ A word in subroutine KATLT which is set to 1 if

‘ the accumulated internal "simulation clock" time
INTIM (in milliseconds) exceeds 15 minutes. It

is used as a key word for selecting an alternate
format for processing any subsequent input equation
cards.

KYPE A word in common block/ISPEC/ used to signal the
‘ - value to be assigned to ATOLL format flag IBMF.
The value assigned to KYPE is taken from control
~cardl. :

1CT . A word in subroutine KATLT used as a counter for
" the lines of printout on a page. If the line count
exceeds 50 when printing the input equation, a new
page is numbered and titled.

LETF "~ A word in subroutine KATRG used to store and
: signal when any character other than a number or
a control character has been encountered while
processing the variables field of an ATOLL record.
It is zeroed whenever a number or a control character
" is encountered. '

LIST . A word in common block/ISPEC/ used to signal
' the program that the converted inputs from the
ATOLL tape are to be stored on an oufput save
tape instead of the system punch tape. It is set in
subroutine READCD when the control card is read.

3-53

NAME

LSFG

LSTEP

LSTIM

MADO

"MADV

MCAS

MDOS

DESCRIPTION

A word in common block/KNTRL/ used in sub-
routine 'ATLT to signal that timing data
encountercd on ATOLL "SCAN" records will be
processed and used to update the internal '
Ygimulation clock" INTIM. Hs value is set in
subroutine READCD from the contents of JOPT.

" A word in common block/NSTEPS/ used in sub-~

routine KONVRT fo store the current test step
number. It is formatted in BCD for use when
printing out explanatory messages, and is taken
from word 1 of each ATOLL record.

A word in subroutine KATLT used to test, update

if required, and store the "simulation clock" INTIM
at the start of a new case. The contents represent
time in-milliseconds and are in binary. ’

A 20 word array in common block/MADOS/ used as
temporary storage for names of DO's which were
indicated on the ATO LL record as being "pulsed" .

signals. Each word is formatted in BCD, and is -

transferred to array KADO before printout. MADO
is zeroed at the start of each case, and is used in

- conjunction with counter MDOS.

A 20 word array in common block/MADOS/ used as
temporary storage for the "restoring" value
associated with a "pulsed" DO name placed in array

'MADO. The value is in BCD format, and is

transferred to array KADV before printout. MADV
is zeroed at the start of each case.

A common block of 4 words containing NCAS, KCAS,
INTIM, and KTIM. These words are used as case

.and time control words during the processing of a

test procedure. They are zeroed at the start of each
test procedure.

A word in common block/MADOS/ used as a counter
for storing the number of "pulsed" DO's encountered

during a case.

- 3-54

S)

. NAME

" MNT

'MSCAN

MSIGN

CMTIM

MXTIM

. NAM

DESCRIPTION

A word in common block/ISPEC/ used for storing
the number of test procedures which are to be
processed during the run. Its value is set in
subroutine READCD when the control card is

- read.

A word in subroutine KATLT used as a flag and
temporary storage for timing data encountered with
ATOLL "SCAN" operators if the flag LSFG has been

.set. If LSFC is set, any timing data which is
- identified (by subroutine TIMEZ) is placed in MSCAN

for updating the current "simulation clock" INTIM.
MSCAN is zeroed after use.

A word in subroutine KATRG used as an internal

~ flag to signal that the current discrete name being

processed was preceeded by a minus sign. (The
value assigned to this particular DO will be

- reversed from the value signaled by the ATOLL
" operator).

A word in subroutine KATLT used as a flag and
temporary storage for pulse timing data encountered
with ATOLL "DISO 0" or "DISO 1" records. Any
timing data encountered for DO's which are ""pulsed"
signals is converted in subroutine TIMEZ and
placed in MTIM for updating the "simulation clock"
when the DO "restoring" input equations are .

processed. MTIM is zeroed after use.

V ‘A word in subroutine KATLT which contains the

fixed octal equivalent of 900,000 milliseconds.

(15 minutes). It is used as a test word for determin-
ing if the accumulated "simulation clock" INTIM
reaches this value during the test procedure. If so,
an alternate simulation input format is used, and
INTIM is restarted from zero.

A word in common block/NAMS/ used for storing
the name of the current test procedure. It is set
in subroutine DNSINP, and is formatted in BCD
for use when printing out the title heading.

3-55

. NAME

© NAMS

NBLOC

- NBRAN

NCAS

" NEXT

NID .

NPAG

NSFG

DESCRIPTION

A common block containing 4 storage locations for.
test procedure identification and status data. It

contains NID, NAM, NBLOC, and NXTB.

A word in common block/NAMS/ used for storing

the current test block number. Its value is set in
subroutine KATLT with data from the variables
field of ATOLL "BOTB" records, and is formatted
in BCD for use when printing out the equivalent
simulation "BIOCK" inputs.

" The Call for subroutine NBRANZ used in subroutine

KATLT when processing ATOLL "test" records
w1th branchmg data

A word in common n block/MCAS/ used as a flag for

storing the current status of program processing.
Its value is set to 2 in subroutine KATLT to signal

- that the current ATOLL procedure "END" record has
" been encountered and all inputs have been processed.

It is zeroed at the start of each test procedure.

A word in common block/NSTEPS/ used as a flag

to signal that the first word of the current ATOLL
record contains a step or substep number. It is

set to 9 in subroutine KONVRT if step-substep data
is present. If the first word is blank, or is a
comment, NEXT is set to zero.

. A word in common block/NAMS/ used to store the

identification word for the current ATOLL test
procedure in process. Data for the word is obtained
from the current position in array IDA, and is
formatted in BCD.

A word in subroutine KATLT used as a counter for
numbering pages when processing program results
for standard output printing. It is zeroed at the
start of each test procedure conversion,

A word in common block/KNTRL/ used as a flag in

subroutine KATLT to signal that a simulation "STEP"

input card has been processed and initialization for

3-56

NAME

NSTEP

NSTEPS

. NXTB

g

DESCRIPTION -~

the start of a new case has been completed, It
is zeroed at the start of a case, and is set when the -
first ATOLL, DISO, SEMI, or TEST INSTRUCTION

" is encountered,

A word in common block/NSTEPS/ used for storing
the combined step/substep corresponding to the
current ATOLL record being processed. The word

_is in BCD format and is setup in subroutine KONVRT.
"The word is used in processing the SIMULATION

"STEP" records. (These become the correlating
links when the processed inputs are used to drive a
DNS model of the system under test and later for
comparing the results of the simulation with the
predictions on the ATOLL tape).

A 3 word common block containing NSTEP, NEXT,
and ILSTEP. It is used for storing test procedure
step and substep data.

" A word in common block/NAMS/ used as a counter

in subroutine KATLT when searching the ATOLL

- tape for a current test procedure name. If the

count exceeds 10, processing is discontinued and
KTRL is set to 10 to signal a DUMP and EXIT.

3-57

SECTION

DNS COMPARATOR PROGRAM

~ CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION "

AUTHOR:

PURPOSE:

RESTRICTIONS:

STORAGE:

4

DNS/ATOLL COMPARATOR PROGRAM

A R. Stone

" Convair division of General Dynamics

Huntsville Operations
11 November 1967

THE DNS/ATOLL Comparator Program was developed as partv
of a test procedure validation technique based on Discrete
Network Simulation (DNS). The Program correlates and
compares the results contained on the output tape from

a test procedure Simulation with the equivalent discrete |
predictions contained on the ATOLL card image tape for

‘the particular test procedure. It produces a listing of

discrepancies identified to particular test steps, and a
listing of any modeled components in the system which
were not actuated or exercised during the test.

1. The program must run on an IBM 7094 w1th IBJOB -
systems capablhty

2. n addition to system input and output, two magnetic
tape units are required for BCD input tapes.

3. A maximum of ten tests may be processed during one
computer run.

4. The maximum number of discrete predictions in any’
one step is limited to 100.

The program and its associated buffer storage area extends

- consecutively from core location 3046)8 to 25777)8. The

program consists of the following fourteen subprograms:

TIMING:

- USE:

10.

11,

12,

13.

14,

CONTRD
CONVRT
DNSINP

. DNSRDG

. DOSRDG

KATLT

KATRG

KEPCKZ

CHEKZ

COMPAZ
NIDEX
PREPAZ

PRINZ

‘READCD

Driver (Fortran).
Formats step and substep data (MAP)
Reads and identifies records on

. simulation output tape (Fortran IV).

Identifies, processes, and stores
discrete inputs and values from the
simulation (MAP).

Identifies and stores any redundant
discrete outputs from the s1mu1ation.
(MAP).

Reads and 1dent1f1es records on the
ATOLL card image tape. (Fortran IV).
Identifies, processes, and stores names
and values of ATOLL discrete predictions
(MAP).

Identifies and updates step/substep key
word for DNS and ATOLL tape corre-
lation (MAP).:

Controls data comparison and prepara-
tion of results for printing (Fortran IV).
Compares names and values of discretes
and identifies any differences (Fortran
Iv). R -
Reformats test procedure identification
for DNS/ATOLL compatibility (MAP).
Reconstructs and formats discrete
names and values for printout (Fortran
v). ’
Prints discrepancy headings, discrepancy
lists, and messages. (Fortran IV).

. Reads program data contrgl cards

(Fortran IV).

The program processes approximately 3000 tape records - v
(1000 ATOLL and 2000 DNS tape records) containing an aver-
age of 120 ATOLL steps and 60 DNS case histories per minute.

A run request, two magnetic tapes, and two program control -
cards are required to set up the program for operation. The
two particular tapes to be compared will be designated on

the run request. The first of these tapes is an ATOLL BCD
card image tape for a selected test procedure, or group of
test procedures. The second tape is a simulation BCD out-
put tape previously created by stimulating a DNS model of the

4-2

ey

system under test with driving functions derived from the

'ATOLL card image tape. (Refer to Section 3, DNS/ATOLL

Input Conversion and Punch Program). A typical operation~
al card deck setup is: o :

- $JOB ,
$PAUSE Mount tapes.
$ATTACH A5 (ATOLL card 1mage)
$AS SYSCK1,HI
$ATTACH = B6 (simulation output)
. $AS SYSUTé, HI
$EXECUTE IBJOB
. $IBJOB GO
(DNS/ATOLL Comparator Program Binary Deck)
$DATA
CONTROL CARD 1
CONTROL CARD 2

(Card 2 continuation cards if required)

7/8 end of file

Control card usage is as follows:

Card 1 - Job specification card always required.

Col.

Col.

. Col.

Col.
Co

3 :
4, 5
6

. 7,8
. 9

. 10 thru 12

13 thru 18

19 thru 25

26 thru 72

Blank (unused spare)

Blank

1 or 2 (to designate type of ATOLL

tape - 1 is for IBM ATOLL format,

2 is for Boeing format).

Blank

0 or 1 (to specify whether simulation
state lists are to be processed - if 0,
skip; if 1, process).

Integer number between 1 and 10 to
designate the number of test procedures
to be compared during this run.
Identification number of first test pro-
cedure to be processed. The identifi-
cation will be formatted the same as
identification contained on the simulation
output tape. '
Identification of second test procedure
if included.

Up to 10 additional test ID'g if
needed.

R eecn
e e

METHOD::

Card 2 - Data definition - always required.

Col. 1 thru 4 A number between 0 and 200, right

adjusted, to designate the number,

if any, of ATOLL discrete inputs ,
which are to be excluded from the com-
parison. If none are to be excluded,
Col. 4 must contain a 0.

(Col. 5 thru 80) (Blank if Col. 4 is 0)

~ Col. 5 thru 8 (Numeric identifier of first DI,
: 9 12 2nd DI, etc., depending on number of
13 16 discretes designated, and extending

from Cols. 0 thru 80 of succeeding cards

as required to list the required number
of DI numerical identifiers.)

The program first reads the two control cards. It uti-
lizes the first control card to determine the type of ATOLL

format it will encounter, the test procedures to be proc-

essed, and whether any unused components are to be listed
at the end of the test comparison. The second control
card signals whether any discrete inputs (DI's) are to be
excluded from comparison (such as "Don't care DI's",

" or external discretes not incorporated into the DNS

model). I DI's are to be excluded, the number and
designations of the DI's are read, formatted, and stored

" in an array for matching against DI's encountered as
. the ATOLL predictions are read. Counters for the num-

ber of test procedures remaining to be processed are
initialized. o ‘

The number of test procedures remaiiu'ng' to be processed

- is checked. If all have been processed, the program

cleans up and exits. If test procedures remain to be proc- -
essed, process counters are updated and a correspond-

ing test procedure ID from the input list is placed in

the current name cell. -

1. Records on the simulation output tape are checked
against the aarrent name cell until the matching
ID word is located. When located, process controls
are set to signal that the simulation tape is in
position to start the test procedure comparison.

4-4

G

(If not located, controls are set to signal ﬁnex- .
pected end of simulation tape, and a dump and exit
is made).

2. Records on the ATOLL tape are then checked
against the current name cell until the matching
ID word is again located. When located, process
controls are set to signal that the ATOLL tape is
also in position to start the test procedure com-
parison. (If not located, an unexpected end of file
will be encountered, and the run will be discontinued),

Storage areas for encountered simulation data are
initialized, and a simulation case history is read off the.
simulation tape.

1. The simulation case comprises all data from the
first "step" record encountered until a new (next)
"step" record (or an "end" record) is read. The
actual step and substep numbers contained on these
"step'" records become the unique case starting
and case ending correlation words for locating the
equivalent data records on the ATOLL tape. The "
case ending "'step" record is held in standby, and
will become the starting "step' for the next case.

2. The records following the first "'step" record are
checked for specified simulation activity labels,
and in turn for discrete data. Any discrete inputs
encountered are then checked and processed as
follows:

a. If the DI has not been encountered previously
during the current case, the DI value and the
' numerical designation are combined and stored
as a unique word in a simulation DI array NSDL

b. If a DI has been encountered previously during
the current case, it is stored in a recurring DI
array NYCLE. If the DI value has changed, the
new value is substituted for the previous value
in the appropriate position in the simulation
DI array NSDI. ‘ :

[t

¢, Ifa DO is encountered on a record with the ™~

DNS "extra" label, the DO designation is
stored in a "redundant input" array, NSDO.

d. When the next "step" record (or "end" record)
is encountered, the current case is concluded,
and controls are transferred for locating and
processing the equivalent data on the ATOLL -
tape. :

'D. Storage areas for encountered ATOLL data are nutia.l-
ized and the ATOLL record containing the unique case
started correlation word (refer to C. 1) is located. The
case starting record and all subsequent records are check-
ed for specified ATOLL operators, for step and substep
numbers, and any discrete prediction data is processed
until a record containing the case ending correlation word
is encountered. The case ending record is held in stand-
by and in tuin becomes the starting record for the next
case. The test and DI prediction data encountered are
processed as follows:

1.

If a pre-specified list of DI's to be ignored was

. included at run time, each DI encountered during
the case is checked against this list. If found in

the list, the DI is merely stored in a "Don't Care™
array LOST for subsequent comments listing. If
not found in the list, the DI is processed exactly

‘as in C.2.a and C.2.b, except that the processed

data is stored in ATOLL counterparts KADI and

- KYCLE of the Simulation arrays.

Test operators encountered are checked for branch~ - -
ing data. Any steps and substeps specified as branch
points are processed and printed as they occur, pro-
ceeded by a case heading identified to the starting
step and substep.

When the case ending correlation word is encounter-
ed, the current case is concluded, and controls are
transferred for comparing the ATOLL data with the

‘Simulation data compiled from the current case.

E.

The Siniulation data and ATOLL data compiled from
the current case are compared. If no differences are
encountered, controls are transferred to F. If differ-

. ences or discrepancies were encountered, and a case

- heading has not been processed (ref. D.2), a case

heading identified to the starting step and substep is
printed. Comparison of the Simulation data and ATOLL
data proceeds as follows:

1. If any DO's were placed in the "redundant input"
array, they are hsted out under an expla.natory
‘heading.

2. Error flags and difference counters are initial-
ized, and any combination ""DI and value" words
in the Simulation DI array NSDI are compared
with any combination "DI and value' words in the
ATOLL DI array KADI. All matching words are
zeroed.- Any remaining words in the Simulation
DI array will have been different either in name,
in value, or both, and are therefore formatted and -
printed out in conjunction with an explanatory head-
ing. Similarly, any remaining words in the ATOLL
DI array are printed out under an equivalent head-.

ing.

. 8. Error flags and different counters are re-initialized,

and any recurring Simulation DI's are compared to

any recurring ATOLL DI's. Any Simulation differ-

ences or ATOLL differences are printed out under
" explanatory headings. '

4., If any DI's were placed in the "Don't Care" array
LOST during the case, (ref. D.1), these DI's are
printed out under an explanatory comment.

After completion of the current case comparison,the
status of the processing is checked.

1." If the "end" (end of current test procedure) records
have not occurred, control is transferred back to
C. for reading in a new case.

INPUT FORMATS:

2. If the "end" records have occurred, and the simu-
lation cycles list is to be ignored, control is trans-
ferred back to B.

3. If the list is to be checked, the program proceeds
- to locate the DNS "*List" label. All records are
checked for names and values contained in their '
cycle count. Any names encountered which were
not activated or cycled during the test are listed
out. When the end label of the list is encountered,
control is returned to B.

' , Figs. 4-1 and 4 -2 illustrate the typical content and format of

the two types of data to be compared by this program. The
formats for the two control cards required in the input deck
are discussed in the section headed "Use".

Fig. 4-1 shows representative portions of the resultsof a -
test procedure simulation. The portions shown are typical
of the content and format of the simulation output tape. The
lines identified on the left with an asterisk were the result
of a simulation control card. The lines identified on the

left by the activity label "input" were the result of an input
equation. (These are reflections of the driving functions
derived from the tape of Fig, 4-2 by the Input Conversion

- and Punch Program prior to the simulation). The remain-

ing lines above the "LIST" label are typical of the history
of reactions occurring in the model as a result of these
inputs. Activity labels (‘input' and 'entry') preceded and
followed by an asterisk label constitute a 'case'. The case
is identified by the step number on the asterisk label im-
mediately preceding the activity label. The step number is
used to correlate the simulation data with the equivalent
ATOLL data. The lines below the "*LIST" label represent
portions of the state list which records the final value for
each variable, and how many times it changed state during
the test procedure. The numbers at the left of these rec-
ords are the internal code numbers of the variables, and
are always listed in numerical order.

Fig. 4-2 contains representative portions of the ATOLL
card image tape. The portions shown typify the IBM ATOLL
format and data content. The program monitors all ATOLL

- instructions shown except the "Delay" and "Scan" instruc--

tions. Primary concern is with the 'DISI0 * and 'DISIL' -
records, which contain the names and values of the predic-
tions. The step and substep numbers which appear at the

*

4-8

‘uorjeINUIIS 9aInpadoad 3593 Jo saed ozuﬁ:,omo._&om *I~-% oan81y

P T ‘ . . . T 1ST7 _ONIx
% X = $6G976 ez
i 0 0 = 560918 ez
0 _ T s_%ea9iL _ __ Oi€z
) 1 1 = €11q 21 !
: 0 M = 1110 11
A oo S0 . otra ot . .
€ 1 = €10 € M
1 1 = z1a Z -
m 1 . B , = B 110 1 !
E S3T0AD 0 0 o 0 aldl Z ‘gN 00602 Lv tSTx
%
. ~1_o3s , N aNgx_Tw ™
“gggroe T T 4 1 sL1Q ¥ILINT
$58°02 1 cl10 7
66802 Z 1 6AgEl H3AINI
..698°02 1 6MBEZ L
"T0g8°02 Z 1 1620 . " ANGNI
L g R S . 0006€0 . ON d3LS*x _ *,
"G 3 1 0 , ‘ s11a WIINT
595°8 R $11@ 4
L6988 T 0 6LIN%2L Y3IINT |
$95°8 0 6LINTL L
- 095°8 1 0 6%21 RENS R
. 095°8 0 N2l -
TTeeg08 1T . 9 LTHZL EINER
65c°8 .1 ®LINCL .
" 065°8 T ” oc13a T InGNT
, o Lo . e 0SO0BCO N d3lSx __ *
w : €00Tval INUN% *
..) e e e .. - LSIT QvaHx

*ade} a8ew] paed T IOLV .mo. sjaed aAnyRIUS

[

o -

soadey *Z-p oanSrg .

. 0020S0NV - aNErrry—
GO1080NY NYTISOT !
. 000080NY $GLOONIQ 1151060 :
w 006610NV TECUNDU T¢STAO006E :
: CO6ELONY TOTGNGa 7S TUTOOTE |
. ... boseronv. o - —NYI3%Z |
w “Co0eLeny - $ZZCNIT - —yrSTORt T
. 0062100V . . 92ZONIQ D1S100T Co
. 00EZLONV CHZCNDQ T7STUU0U62 3
¥ . {
00L2L0NY S00INIQ°CCO1E09 TISTITU0SEL :
e e i eim e : : o e e e eid
cgocLony _ S 0s¢ N¥DJSU9 ;
) - 006ZLONY STOONIQ - 0181065
“ cOoHcLONY . TOTCNOT TS TUUS ot
~ coEzZLONY ’ NVISGH
.. cozzLonv _ 7001 X T1500% i
001ZL0NYV ’ €10CNIQ : TIS1QSE .
. cooZLCNY CEZCNIQ oI5 100w , A
b ooetLONY 0%Z0NIQ 11s10¢2 Lo
L 1'7 A1) AN —— ——QEOCNDU . RS —TESTOOTT—— U
; oooooo:(. — - .M @J;..;amwozﬁa — ,,T,. ~ 4.,z . ‘;MSMbﬁcocmaz @«
F5E000NY - S— —ISIT WIISAS *S 0T GUC-NT=%" .
002000NY L o moo~<o~. o L : .sicu54200aoo M

4-10

OUTPUT FORMAT:

start of each record are the basis for correlating this data’
with the simulation data. The step number occupies the
first 4 characters in the record and is right adjusted. (The
particular step numbers shown here are preceded by a
blank. The next 2 characters constitute the substep number.
The step number is not repeated, but is Implied for sue-
ceeding substep numbers until a new step number is
encountered). - ‘

- Fig. 4-3 represents the prologue printout from a compari~

son run. The bottom pair of lines are images of the two
control cards required for the input deck. These cards
were discussed in the section headed "USE". The preced~
ing heading and test procedure list were printed by the pro-
gram from the data in the first control card image. The
second control card image signifies that 3 discretes, ‘
DI0225, DI0226, and DI0233 are to be excluded from any
comparison, '

F1g 4-4 represents some typical discrepancy listings
prepared by the program after conducting a compatison.

1. The message listed under step 170 indicates that-
simulation result DI267 was not found on any of
the ATOLL "DISI1" records encountered during
the case. (If DI267 had been located as a "DISIL" .

~ prediction, no step heading or message would

bave been processed. If DI267 had been found on
a "DISIO" prediction, the heading "ATOLL Dis-
crete Not in Simulation' and statement "DI10267 =0",
would also have been included for this case). '

2. The note listed for the case which started at step
0190 signifies that when DO121 had been processed
as an input during the simulation run, its value

~ was already at the state requested. This indicates
that D0121 may be an unnecessary or redundant
 step in the test procedure. '

" 3. The message listed under step 0280 substep 00
indicates that DI240, which was encountered on a
"DISI 1" record (reference Fig. 4-2, DIN0240),
was not found as a simulation result. The analysis
here is handled as in 1. above.

4-11

e e e e e b e tam e a8 M A e b e 4 e 2+ i e e e g 4o A

__Ie¥ TEST PRECEDURE NUNMBERS

ICA1C03

RN S S el

e = o

1CAEC19

_1CAS030

10A56011 §

- ~__1CAEC12 |
0 1 1 5DALCC30A501GDASC2CDAS011CA5012 '
30225C2260233 ~ ' f

"’13
0
W

: S A ’ ;
Figure 4-3. Prologue printout for comparator program.

4-12

PlSCR"T*— "\:Th?RK SINUWIW

- _1BM TrST PRZCEDURE _10A1CQ3 . I
y ‘
; 51Fp 0170 _SUBSTEP__0C ,
; 'DAS DISCRETE IN NET IN ATZLL i
' T Cic267 = 1.
1 S
Lt . T . A
STEP” 0190 SUBSTEP GG __ _
NETE - CISCRETE EUT ALREACY AT THE STATE, REQUESTEC.,
cecral 4
S1EP 0280 SUBSTEF 0C
ATELL CISCRETE. IN NEZT IN SINGLATIZN
e CIC240 =1 |
;
___SIEP_ €280 SUBSTEP 50
AZTE - TEST AT STEP 0285 SUBSTEP OC CAN BRANCH Tg C21CCC
NBTE - £TZLL CISCRETE IS AT IN ONS MECEL o ;
C1C226 | T
CIC225 : !
S1EP 031C SUBSTEP GO :
NETE - NS CISCRETE IN APPEARS MEZRE THAN @NCE. '
Ticizl
, Cic12z
CIC123 :
| 3

O e e i e e - ~ s - -y

Figure 4-4.- Discrepancy listing for comparator program.

4-13

4.

The first note listed under step 0280 substep 50
indicates that an ATOLL "Test" Record' shown on
Fig. 4-2 was encountered. The second note signi~
fies that DI0226 and DI0227 had been found in the
data of Fig. 4-2, but had been included as ATOLL
data to be ignored (reference Fig.. 4-1).

The note listed under step 0310 signifies that three
discretes cycled during the simulation before

. attaining final values which corroborated the ATOLL

predictions. If corroboration had not occurred, ad-
ditional messages would be included as in 1. above.

Fig. 4-5 represents a portion of the complete list ,
of modelled variables or items which were not used °
in the test procedure. The list is obtained by lift-
ing out of the Simulation state list (reference '
Fig. 4-1) all variables whose cycle count was zero
at the epd of the test. .

.

4-14

I6F TEST PRECEDURE _IDA1CO3

]

~ TFE FﬁLLEkING ITENS WERE NZT CYCLED DURING THIS TEST PRBCECURE

ITEN T CYCLES

TCI11

Cila

Tli6 .
clie

CI1lS
Clz2

SOIVER
Clz4-

plzé

L1258 -

clz?
C146

Cl47 _ .
D149 - *

. DISs¢

c1se . v

prer . - .
DIES -

PR

R O A

CIes

CONONOO0OV0OINORROOODOO

» o je o Je o ® e lo o jo o o oo o joe 0 (0 @

R . a

1L58A
2LE8A

21.58A
1L588

2Ls88
3L58R

1LSEC
2LE8C

3Lc8c
1LE8D

20580
1L€C95

2LEL95
3LELCI5

. 4LECYS.
SLELSS

SO U SN I U

"6LECI5.
- 7LEC95

. 9LELCYS

8LELI5

\
e joe o @ ® & o » @ o o (06 0 le 0o jo o e e

(=ReleRelcNolleNaloNellofo)-NollNal o Rl o R

Figqre' 4-5. Unused component list from comparator program.

4-15

. APPENDIX A .

PROGRAM FLOW CHARTS

4-17

. paeolN

G PAGE, BLANK m}ox FiLMED.

Y
s s
_ INITIALIZE -
A
- AN E :
AnD . ~ CONTROLS

o

DNS

READCD DNSIN
GO PROCESS GO FIND IDA
CONTROL CARDS . NUMBER ON

FOR IDA'S - DNS TAPE

WAS 1DA
LOCATED

ARE ANY
{DA'S 10 BE
_ PROCESSED,

KATOL
GO FIND DA
ON
ATOLL TAPE

" REWIND
TAPES .

WAS (DA
LOCATED

PRINT

GO PRINT
TITLE AND PAGE
HEADING

Figure A-1. SUBROUTINE CONTRD (L of 2)
| 4-19 |

1S
LIST T0
BE PROC,

" WAS
Dﬁmfﬁgs 'k Gjo !f'lﬂsr
NORMAL UNCYCLED
- VARIABLES
—_—.——.—-}
.
4
. CHECKZ PRINZ
"PREPAR \ . 60 PRINT
WAS STEP K . OUT ANY
-coaggkmon 0 =

DIFFERENCES

ERINL
GO PRINT
MESSAGE

-

"HAS
END OF 1DA
OCCURRED

'Figure A-1. SUBROUTINE CONTRD (2 of 2)

4-20

SEPARATE
CASE STARTING
STEP

"NST EP!'

=

BLANK FiLL
AND STORE

STEP NUMBER
IN "LSTEP"

POSITION AND
BLANK FiILL

SUBSTEP NO.
N vLssTP!

Figure A-2. SUBROUTINE CONVRT (1 of 1) v

4-21

INITIALIZE
T0 LOCATE -
10A RECORD

INITIALIZE -
" COUNTERS & -

STORAGE

FOR A CASE

RECORD

1S

THIS
*END LIST
RECORD

PRINT
VARIABLE
NAME

ZERO OUT c

LIST IN > - RETURN
PROGRESS FLAG -

"LSFG"

15
THIS A
"NAMEY
RECORD

L2

SET iDA
FILE FLAG
"NSFG", AND
NORMAL "KTRL"

Fﬁgure.Ar3f SUBROUTINE DNSIN (1 of 3)

4-22

ﬂ SET UP TO
=8 CHECK TYPE

\ %/ OF DNS
: LABEL

15 11 ?f:GK;gk
END OF TAPE
o 48844 £RROR

RETURN

D

¥
DOSRDG SET INPUT
1S {1 GO TDENT IFY __FLAG
AN MEXTRA" AND STORE 4 UNINFGY
INPUT VARIABLE oN
2 NAME :

- SET ENTRY
AN MENT ERM FLAG ON
NENFGY

REACTION

DNSRDG
GO PROCESS
AND STORE
NAME AND
VALUE

Figure A-3. SUBROUTINE DNSIN (2 of 3)

4-23

SET "NEXT®

ST N CASE SoNROL
- SET NSTEP . AND NAME
- : FLAGS
. o
' ZERO OUT INCREMENT
IS 1T i FILE FLAG DS case
IDA *END o UNSFGY — CouNTE
SET KTRL
Is FOR NORMAL
LIST T0 BE RETURN
PROCESS ON

SET “LSFg"
FOR LIST
IN PROCESS

LN

Figure A-3. SUBROUTINE DNSIN (3 of 3)

4-24

e

INITIALIZE . -
STORAGE &
COUNT ERS

. FOR CASE

Y

SET CASE
FLAG
CON

b&

ZERO OUT
_NAME PROC,
FLAGS

© IS NAME
PREFIX
DiNO

IS NAME
PREFIX
DI

SET VALUE SET VALUE

. FLAG - FLAG

"ND'XF" "ND' F"
PLUS ' MINUS

v

Figure A-4. SUBROUTINE DNSRDG (1 of 2)

- 4-25

L5

g

SHIFT OUT
" A NAME
. CHARACTER

SHIFT AND-

STORE IN
"NNU""

STORE
NAME IN
ARRAY
NSDI

'

HAS
THIS. NAME
OCCURRED
BEFORE

IS
"NDJ F"
VALUE FLAG
¢ MINUS

1TS VALUE

HAS
CHANGED

v

RECOMBINE

NEW VALUE -
NAME IN -
ARRAY NSDI

COMB INE
VALUE WITH
NAME

- COUNT AND
~ STORE NAME

INCREMENT

ONLY IN
ARRAY ‘NYCLE

4

INCREMENT
COUNTER AND
REGISTERS
FOR NEXT
NAME

IN FLAG
NL M

STORE NAME

. RESET
REGISTERS
FOR NEXT
RECURRING

NAME

Y

RETGRN -

' Figure A-4, SUBROUTINE DNSRDG (2 of 2)

4-26

. ENTRY

IS
CASE FLAG
YNDOF* |
ON

PROCESS
REST OF

WORD
CHARACT ERS

- INITIALIZE.
REGISTERS
AND COUNTS
FOR A CASE

|

1S
CHAR.
GTR.QTHAN

SET CASE .
FLAG
"NDOF'* ON

L]
SHIFT AND
BUILD uP -
NAME N

"ANUM"

SETUP TO
. CHECK
CURRENT
DNS 'WORD

STORE NNUM
NAME N
ARRAY
"NSDO"

 INCREMENT

STORAGE
REGISTER &
COUNT FOR
NEXT NAME

Figure A-5. SUBROUTINE DOSRDG (L of 1)

4-27

i

INITIALIZE

" 10 LOCATE

1DA NAME
RECORD

INITIALIZE
COUNTERS .

"AND STORAGE

FOR A CASE

READ
ATOLL
RECORD

is
DA FILE
FLAG ON
(KAFG)

RECORD

PROCESS
"~ DA
NUMBER

SET DA
FILE FLAG
AND KTRL

NORMAL

T

 Figure A-6. SUBROUTINE KATOL (1 of 5)

4-28

STEP-SUBSTEP
- WORD .

s
BLOCK_FLAG
(LBKF) ON

‘QLogETfLAG L
ON (LBKF)

o,
§

Figure A-6. SUBROUTINE KATOL (2 of 5)

4-29

s ZERO_OUT

THIS FLAgA(igég)
THE ATOLL AND (NXTF)

END OPER

IS
THIS
© SAME AS
CASE STEP
NEXT®

SET KHOLD
: T0 CLEAR
SET CASE =2)
FLAG. -
(KSTF)
oN

—

ZERD KTIM

AND SEV
NXTF FOR
NEXT CASE

SET KHOLD
ON ERROR

(= 1), AND
INCR, KTIM

SET KTRL
FOR ERROR
INCREMENT RETURN
CASE COUNT-
AND SET-
KTRL NORMAL .

Figure A-6. SUBROUTINE KATOL (3 of 5)

4-30

- SET VALUE

FLAG (KDIF)
PLUS

SET VALUE
FLAG (KDIF)
MINUS

is

PREDICT ION
FLAG (KENF)
ON

SET
PREDICT 108
FLAGoéKENF)

KATRDG
‘GO READ
AND STORE
NAMES AND
VALUES

IS
END DATA
(KENDF)

oN

ZERO OUT
NAMES
PROCESS

FLAGS

SET INPUT
FLAG (KINF)
oN

——

ZERO OUT
PREDICT {ONS
FLAG -(KENF)

4-31

Figure A-6. SUBROUTINE KATOL (4 of 5)

IS THIS
A TEST |-
- OPER.

IS THIS
ATEST O
OPER,

NIDEE
PROCESS
BRANCHING

STEP-SUB
STEP

GO

PRINT OUT
BRANCHING
MESSAGE

 Figure A-6. SUBROUTINE KATOL (5 of)

4-32

IS THIS
A CONTINUE
RECORD

INITIALIZE -
FOR CASE
AND SET R

CASE FLAG ON , oo : '

“ ARE ANY
DI'S T0 BE
IGNORED

ANITIALIZE ’ INITIALIZE ! INITIALIZE
" SEARCH REG. ! ; NAMES % ATOLL WORD
© _AND SET PROCESSING AND COLUMN

SEARCH KEY . - FLAGS COUNTERS

Figure A-7. SUBROUTINE KATRDG (L of 5)
| 4-33 |

AR
\2/

"~ GET 'ATOLL
" HORD FOR
CHECK ING

INCREMENT
COLUMN AND
CHARACTER
COUNTERS

BUILD UP
~ NAME WORD.
KNUM

TH
6TH CONSEC.

IS
THIS
LAST CARD
COLUMN

CHAR,

¥

SET
CONT | NUE
FLAG ON
(KONF)

!

SET NAME
(NUMBER)
IN PROGRESS
ON {KNUF)

INCREMENT
WORD COUNT
REGISTER

!

'SET CHAR.

COUNT FOR

NEXT WORD

Figure A-7, SUBROUTINE KATRDG (2 of 5)

4-34

SET "KONF"
CONT INUE
FLAG ON

s
CONT INUE
(KONF)

ON

SET END

DATA ON W
| o T ~
y SET UP 10
SET MISC. . CHECK
€T M1 , o : CURRENT
LEILER 4 , NAME (KNUM)
‘ ULETF" g ' ‘

Figure A-7. SUBROUTINE KATRDG (3 of 5

4-35

ARE
ANY DI'S
10 BE
. SKIPPED

l »
KNUM
A
REPEAT

Figure A-7. SUBROUTINE KATRDG (4 of 5)

-~ 9

INCREMENT

COUNT AND
STORE_NAME
IN ARRAY
"LOSTH

STORE NEW

VALUE INTO

PREDICTED
ARRAY -
(KADI)

[

i
INCREMENT
CYCLE COUNT
AND STORE -
KNUM |N
KYCLE

INCREMENT -
STORAGE
REGISTER
FOR NEXT
KYCLE NAME

4-36

b

COMBINE
VALUE ONE
WITH KNUM

NAME

STORE_KNUM
IN ARRAY
"KADI™

STORE KNUM
NAME IN
FLAG KLIM

INCREMENT
REGISTERS

AND COUNTS

FOR NEXT
PREDICTION

© Figure A-7. SUBROUTINE KATRDG (5 of 5)

s

4-37

- ENTRY

s
"KEPCK™
ZERO

ZERO QUT
CURRENT
STEP

STORAGE

CHECK
CURRENT
ATOLL WORD
- (1) _

SEPARATE
. STEP
PORTION OF

WORD (1)

Figure A-8. SUBROUTINE KEPCKZ (1 of 2)

4-38

¥

STORE IN
CURRENT

- STEP
STORAGE

e doni w3

T

SEPARATE
SUBSTEP
PORT ION OF

WORD (1) .

!

STORE IN
CURRENT
SUBSTEP
STORAGE

]

SHIFT- AND

STORE N
PRINT
BUFFER

'

o

COMBINE &

- STORE
CURRENT STEP
AND SUBSTEP

N KEPCK

4-39 -

M Vi Sy

Figure A-8. SUBROUTINE KEPCKZ (2 of 2)

ON
MESSAGE

FRINZ
GO PRINT
ATOLL
MESSAGE

ATOLL
PREDICT ION
AT ST0
Lingy

PREPAR
THERE FORMAT

. HHERE DO NAMES
INPUTS

FOR PRINT

LOMPAR
GO COMPARE

DNS Di's
WITH ATOLL
PREDICTIONS

Figure A-9. SUBROUTINE CHEKZ (1 of 3)

4-40

. , PRINZ -
/ . FPREPAR GO PRINT
GO FORMAT OUT LIST OF
——wf NAMES AND NAMES AND
- VALUES VALUES

yd HERE\ :
ANY ATOLL ™

PREDICT ION

DIFF.

. PRINZ.
PREPAR GO PRINT

' GO FORMAT LIST OF '.
NAMES AND Olrﬂueé AND -
VALUES / . VALUES

COMPARE
ANY CYCLIC
DISCRETES

PREPAR
FORMAT
DI NAMES

Figure A-9. SUBROUTINE CHEKZ ‘(2V of 3)

4-41

G

FRINZ

GO PRINT
ouT LIST
OF NAMES

FOR
PRINT ING

WERE N\~ PREPA PRINZ

THERE ™ FORMAT - GO PRINT
DI*'S 10 BE NAMES -DUT LIST
SKIPPED OF NAMES

FOR
PRINT NG

Figure A-9. SUBROUTINE CHEKZ (3 of 3)

4-42

ANY DNS
REACT {ONS

ANY ATOLL
PREDICT JONS

ANY ATOLL
PREDICT JONS

COMPARE DNS
REACT |ONS
HITH ATOLL
PREDICT IONS

ANY DNS
DIFFgRENT

2 s
L LA)
) B> . [NCREMENT
ERROR
COUNT
[]
SET ERROR
AN STORE U
P DIFFERENCES ~ '"ggéog
_ COUNT
SET ERROR
ANch¥g;E — Thes HENT
B> DI FFERENCES '"gﬁﬁﬁﬁ"
COUNT

Figure A-10. SUBROUTINE COMPAZ (1 of 1)

4-43

LOAD MQ & AC
WITH 7TH & 8TH
WORDS DA NO.

‘ SHIFT ONE
' CHAR, TO LEFT , ‘
: DROPPING *4¢ Sy

STORE

WORD ONLY

Figure A-11. SUBROUTINE NIDEX (L of 1)

4-44

o ewRY

iIs -
ENTRY :LAG'

T

SET DATA
SUBSCRIPT
KEY (= 2)

SET DATA SEPARATE
e ot
SV VALUES
FORMAT & °
STORE
NAMES FOR
PRINTOUY
SET DATA F??EQE *
SUBSCRIPY VALUES FOR
KEY (= 1) PRINTOUT -
FORMAT &
STORE
NAMES FOR
PRINTOUT
STORE
BLANKS -
FOR
VALUES

" Figure A-12. SUBROUTINE PREPAZ (1 of 1)

4-45

ENTRY :

.
,////~ 5. - SET ROUTE ; e
CNRY PG Sy)—pe . =T LT e
=1 - INCREMENT
o : . PAGE COUNT

1

HRITE
ITLE &
PAGE
HDG.

WRITE
SUMMARY
MESSAGE

SET ROUTE -
FLAG =2

‘Figure A-13. SUBROUTINE PRINZ (L of 4)

4-46

L
BLOCK FLAG
IERO

HRITE
BLOCK
HEADING

SET BLOCK

NCRemENT lg—
LINE COUNT :
WRITE CASE
HEADING L
AND '
STEP .
. NO. .
- SET CASE
, FLAG ON AND
g — INCREMENT
: LINE COUNT
T
LINE COUNT
LESS THAN Y
’ 50
N -
HRITE
STEP
CORRELL,
MESSAGE
SET ROUTE
. fFLAG=3 -
INCREMENT

I\ . LINE COUNT

Figure A-13. SUBROUTINE PRINZ (2 of 4)

4-47

WRITE
BRANCH

‘ INCREMENY
MESSAGE >

© " HAS >
ENTRYBFLAG

v

INCREMENT

LINE COUNT]
_¥

WRITE

REDUNDANT
INPUT

HEADING

HRITE
DNS
DISCREP,
HEADING

»
-

-~

Figure A-13. SUBROUTINE PRINZ (3 of 4)

4-48

TS ~
ENTRY FLAG
= 4

ATOLL
HEADING

WRITE
DISCREP,

WRITE
DNS

HRITE
ATOLL
\ . CYCLE
\ HEADING

MODEL
COMMENT /
\ .

ki

{NCREMENT
LENE COUNT

INCREMENT -
LINE COUNT

LINE COUN
LESS THAN
54

@—»@

SET ROUTE
FLAG = 4

Figure A-13. SUBROUTINE PRINZ (4 of 4)

4-49

CONT ROL
CARD

READ 1ST

“SET IBM
FLAG &
TlTLE‘fLAG

ZERO OUT
IBM FLAG
& SET TITLE
FLAG = 2

RIGHT
JUSTIFY DI
NUMBERS IN

ARRAY

NODIS

RETORR

Figure A-14. SUBROUTINE READCD (1 of 1)

4-50

o

APPENDIX B

GLOSSARY OF TERMS

1.0 INDEX OF VARIABLE f

The following 1s an alphabetlcal hstmg of the terms used in the DNS/ATOLL Compator
Program

. NAME 4 ~ DESCRIPTION

* IBMF o , ATOLL Format Flag .
IDA S ' Test Procedure ID Number
- IND : R - Internal Directory Key
INUM o ' Transfer Argument
.. IPAG - : Page Counter
- ISPEC R , Common Heading (JOPT, KYPE
S B , LIST, MNT, IDA) :
ISSTP - o Current ATOLL Substep
ISTEP S Current ATOLL Step
JOPT. : (Unused) ~
JSTPS : ' Common Headmg (ISTEP, MSSTP)
‘KADI R ATOLL DI and Value
KADIS B Common Heading (KDIS, KADI,
KAFG . ATOLL IDA in Progress Flag
KATRL - ' Common (KRDF, KONF, KENDF,
o ‘ T KDIF, KNUM, KNUF)
- KAWDS = : ATOLL Tape Input Buffer
' KBOT » . ATOLL "BOTB" Operator
KCAS ATOLL Case Counter
KDIF . ' ATOLL DI Value Flag
KDIS ' ATOLL DI Counter
KEND - o ATOLL Y"END" Operator
KENDF ATOLL END-Data Flag
KENF. - ATOLL "DISI" Operator Flag
. KEPCK L ' Current ATOLL Step/Substep
' KER - , . ATOLL Discrepancy Counter

KERC ‘ DNS/ATOLL Discrepancy Counter

4-51

' NAME

KHOLD

~ KLIM

'~ KNT
KNTRL
KNUF

 KNUM
' KONF

" KOVER

KRDF
KSTF

KTIM.
KTRL

KYCLE

'KYCLES

KYPE
. LBKF
. 'LBLF -

" . LBRA

' LCT
LETF
LIST
LOST
LPRV

LRET

LSDV

. _LSTEP

LSSTP
MCAS

MNT

- MOUT

MSSTP
NAM
NAMS

' NBLOCK
NBRA .
NCAS

NCT -

4-52

DESCRIPTION

Step Correlation Flag

ATOLL "DISO" Operator Flag
ATOLL DI Storage Limit Flag
ATOLL "NAME" Operator

IDA'S yet to be Processed Counter
Common Block (KTRL, IBMF,
NSFG, KAFG, LSFG) ,
ATOLL "DI in Process" Flag

* Current DI Name

ATOLL Continuation Flag

ATOLL "DI Overlook" Flag
ATOLL "Case in Progress" Flag
ATOLL "Step Located" Flag

Step Discrepancy Counter
Processing Control Key

ATOLL "Recurring DI" Counter
ATOLL "Recurring DI'" Name
Common Block € YC, KYCLE)
IBM/Boeing Format Key
Previous Block Number

ATOLL Block Flag

BRANCH Transfer Argument
Line Counter

ATOLL Letter Flag

DNS State List Flag

DI to be ignored

Common Heading (LSDV)

Internal Return Key

DI BCD Value .

Case Starting Step Number

Case Starting Substep Number
Common Heading (NCAS, KCAS,
KERC, NTES)

Number of IDA's

Number of DI's to be ignored
Branching Substep Number
Current Test Procedure

Common Heading (NID, NAM, NBLOC,
NXTB, LBLF, NSUBT)
Current Block Number
Current Branching Step/ Substep
Simulation Case Counter

List Processing Line Counter .

NAME -

NDIF
" NDIS
NDOF
. NDOS
. - NENFG

* NGOOD
" NID

NINFG

- NLIM
NNFG

NNUM

- NOD

. NODIS
NOK.

NOPRT
NPAG

- NRDF =~

‘NSDI
NSDIS
NSDO
NSDOS

" NSFG -

NSTEP =

 NSTEPS

NSTPF

'NSUBT
. NSWDS
" NTES
NUMS

NXTB
NXTF
NYC
NYCLE
NYCLES

DEFIN iTIONS

NAME .

IBMF

DESCRIPTION

Simulation DI Value Flag
Simulation DI Counter

Redundant Input Flag

Redundant Input Counter
Simulation Enter Flag

Next Case Step/Substep Number
Common Heading (MOUT, NODES)
Current Test Proceduxe ID :

‘Simulation Input Flag

Simulation DI Storage Limit Flag
Simulation Name in Process Flag
Current Simulation Name

DI's to be ignored Counter

Don't Care DI List

Simulation DI Discrepancy Counter
Common Heading (NOD, LOST, KOVER)
List Processing Page Counter

~ Simulation Case in Progress Flag

Simulation DI and Value

Common Heading (NDIS, NSDI, N LIM)
Redundant DO Name .
Common Heading (NDOS, NSDO)

‘Simulated IDA in Progress Flag.

Current Case Step/Substep
Common Heading (NSTEP, NEXT,
LSTEP, LSSTP, KEPCK, KHOLD)
Step Label Flag

Case Heading Flag

Simulation Tape Input Buffer

DNS /ATOLL Discrepancy Flag
Common Heading (NNFG, NNUM
NRDF, NDOF)

Next Block Number

Next Case Ready Flag

Simulation Recurring DI Counter
Simulation Recurring DI Name
Common Heading (NYC, NYCLE)

-~

DESCRIPTION

A Word in common block/ISPEC/ used by the program
as a means of selecting alternate groups of instructions

NAME

IND

INUM

TPAG

ISPEC

ISSTP

. ISTEP

JOPT

DESCRIPTION.

_ for processing certain ATOLL format or style

differences between Boeing and IBM test procedures.
The flag is set (by means of control card 1) to 1 if
the ATOLL tape to be used is an IBM tape. If not,
the flag is zeroed.

A 10 word array in common block/ISPEC/ used to
store the names of any (up to 10) test procedures
which are to be processed. The array is used in -
conjunction with counter MNT. Each name (ID) is
stored in sequence as a 6 character BCD name
exactly as it appeared in the data field of control

.card 1.

An internal keyword used in subroutine PRINZ to
direct the program to specific groups of instructions.
Its value is determined from the calling routine. ‘

An internal location used in subroutine DNSINP as

an argument when making a call.

An internal location in subroutine PRINZ used for
counting and numbermg pages for the program
printout.

A common block of 14 words used to store the con-~
tents of the first control card. The array contains
JOPT, KYPE, LIST, MNT, AND 10 IDA locations.

An internal word in subroutine KEPCKZ used to
store the latest test procedure substep number en-
countered when reading the ATOLL tape. The sub-~
step is stored as 2 BCD characters rxght adjusted

and zero filled leading.

A word in common block/JSTPS/ used to store the
latest test procedure step number encountered when
reading the ATOLL tape. - The step number is '
stored as a 4 character (right ADJ nonblank BCD)
number left adjusted in the word and zero filled -
following.

Unused spare word in common block/ISPEC/.

4-54

. NAME

JSTPS

' KADI

- KADIS

- KAFG

' KATRL

KAWDS

KBOT

KCAS

DESCRIPTION

A common block containing ISTEP and MSSTP,

and accessible to PRINZ for printing information
concerning branching test instructions encounter-

ed on the ATOLL tape. -

A 100 word array in common block/KADIS/ used

for storing the name and value of each discrete
prediction encountered when processing ATOLL
"DISIO" or "DISI 1" records during a case. The
value is stored as two BCD characters left ad- , .
justed in the word. The numerical DI designation =

_is stored as a 4 BCD character number right

adjusted in the word. For printout, the value
characters are replaced by the BCD designator
"DI". The array is zeroed at the start of each
ca%.

A common block containing KDIS, 100 KADI
locations, and KLIM. It is used for storing _
processed ATOLL prediction data during a case.

A word in common block/KNTRL/ used as a flag -

to signal that a particular test procedure is in process
on the ATOLL tape. It is set when the particular

test procedure name (NID) has been located on the .
ATOLL tape, and zeroed out when a subsequent
ATOLL "END" record is encountered.

A common block containing 6 words or flags used
for controlling the reading and processing of the -
ATOLL tape. It contains KRDF, KONF, KENDF,
KDIF, KNUM, and KNUF. «

A common block containing 14 words used as the
input buffer for storing each 14 word ATOLL tape
record as it is being processed

A test word in subroutine KATOL used for identifying
ATOLL "BOTB" records. .

A word in common block/MCAS/ used as a counter

for storing the current number of ATOLL cases

which have been processed. It is zeroed at the _ .
start of each test procedure. . - .4

4-55

NAME

" KDIF

- KEND

KENDF

KENF

'KEPCK

DESCRIPTION -

A word in common block/KATRL/ used as a flag
to signal the value of the current DI predictions
associated with an encountered ATOLL "DISIO" or
"DISI 1" record. The flag is set minus for " DISIO"
records, and is set plus for "DISI 1" records. -

A word in common block/KADIS/ used as a counter
for storing the number of ATOLL DI predictions
encountered during a case. It is zeroed at the start
of each case. -

A test word in subroutine KATLT used for identify-
ing ATOLL "END" records.

A word in common block/KATRL/ used as a flag
to signal that all names associated with a particu-
lar ATOLL "DISIO" or "DISI 1" record have been
processed. It is set whenever an ATOLL "End of
variable field" is encountered or signaled.

A flag-in subroutine KATLT used to indicate that an
ATOLL "DISIO" or "DISI 1" record has been en-
countered. It is zeroed at the end of each case,

A word in common block/NSTEPS/ used as a
means of identifying specific ATOLL records A
which are to be treated as the starting and ending
records for a case. The end word is updated in
subroutine KEPCKZ each time a new ATOLL step
or substep is encountered. It is formed by com-
bining the current or latest step (ISTEP) and the
current substep (ISSTP), with the step number
occupying the leftmost 4 BCD characters, and the
BCD substep number occupying the remaining 2

. characters.

An internal counter in subroutine COMPAZ used as
a counter and subscript for storing any ATOLL
predictions which were not found in the simulation
results for a case..

4-56

"NAME

KERC

" KHOLD

KLIM

DESCR[PTION

A word in common block/MCAS/ used as a counter

for storing the total number of discrepancies en~-
countered during a complete DNS/ATOLL test
procedure comparison. (If no discrepancies occurred,
a comment so stating will be printed out at the end

| ~of that comparison. '

A word in common block/NSTEPS/ used as a flag

- to signal that an ATOLL step/substep number higher
~ than the number specified as a case ending record-

has occurred. If a step/substep discrepancy occurs,
the flag is set to 1, and the current case is con-
cluded, but the comparison is bypassed. If a match
between the ATOLL "KEPCK" and SIMULATION
"NEXT" occurs during the following case, the flag

is set to 2, and correlation is re-established. (If

no match is located after 10 attempts, the program

dumps and exits).

. An internal flag in subroutine KATLT. It is set to

1 if an ATOLL "DISO 0" or 'DISO 1" record is en~
countered. It is zeroed at the start of each case,
and was included for future program capability
expansion.

A word in common block/KADIS/ used as a signal
flag should the specified storage limit of 100
ATOLL predictions for one case be exceeded, If
exceeded, each excess DI encountered is stored in

_ the flag.

A test word in subroutine KATLT used to idéntify
ATOLL "NAME" records. '

An internal counter and test word in driver program
CONTRD used to keep track of the number of test -
procedures remaining to be processed. It is set
with the number from control card 1 (MNT), and

- tested before each test procedure is started. (If

zero, the program exits. If not, KNT is decre-
mented and a test procedure is set up for comparison).

3

4-57

: TNAME

KNTRL .

KNUF

KONF

KOVER

" KRDF

KSTF

. .'DESCRIPTION- IR

- A common block contammg 5 process control ﬂags .

(KTRL, IBMF, NSFG, KAFG, LSFG).

A word in common block/ KATRL/ used as a flag

- and temporary character storage cell during the

identification of names encountered in the ATOLL

~ variables field. It is set in KATRG when any of the
~ characters (0 thru 9) are detected, and zeroed
. whenever any other character is encountered.

A word in common block/KATRL/ used as tempo-
rary storage while building up the numerical name
designation for discrete predictions encountered
while processing the variables field of ATOLL
"DISIO" or "DISI 1" records. The word is for-
matted in BCD, and will contain a 4 character
numerical discrete des1gnat10n right adjusted and

" zero filled.

~A word in common block/KATRL/ used as a flag

to signal that the current ATOLL variables field
is to be continued on the next ATOLIL record. It
is set in subroutine KATRG if a continuation
character is encountered, or no field termination
characters are encountered. It is zeroed before -
each new variables f1e1d is processed.

"~ A word in common block/NOPRT/ which is set in

KATRG during initial entry to signal all subsequent
entries during the run that any required initiali-

zation of data pertaining to DI's to be ignored has -

been completed.

. A word in common block/ KATRL/ which is set in

subroutine KATRG during the first entry in a case.
It signals any subsequent entries that initialization
of controls for DI predictions data has been com-~
pleted. It is re-zeroed at the end of each case.

An internal word in subroutine KATLT used as a
flag to signal that the case starting step has been
located on the ATOLL tape and the case is ready

to process. When the correct starting step (NSTEP)

4-58

" NAME

"KTIM

KTRL

KYCLE

KYCLES
KYPE

- LBKF

DESCRIPTION

is located, the flag is set to 1. It is maintained

at 1 each time the correct case ending step (NEXT)
is located. It is zeroed at the begmnmg of each
new test procedure.

An internal word in subroutine KATLT used as a
counter to store the number of times a step corre-

" lation discrepancy has occurred (KHOLD =1).

(If the count exceeds 10, the program dumps and
exits).

A word in common block/KNTRL/ used as a proc-
essing status flag. Its value is returned to CONTRD
as 2 for all normal returns. If its value is 10, a
processing error has been detected, and the pro-
gram is set to dump and exit.

A word in common block/KYCLES/ used as a counter
to store the number of ATOLL discretes which were
encountered more than once during any one case.

The counter does not increment above 10, and is
zeroed at the beginning of each case. '

A 10 word array in common block/KYCLES/ used
to store the names of any ATOLL discretes which
were encountered more than once during a case. '
If more than 10 recurring names are encountered,
the last name encountered will be placed in the 10th

word. The array is zeroed at the start of each case.

, A common block'contaihing a counter KYC and 10 ~

KYCLE locations used for storing any recurring
ATOLL DI predictions which are encountered dur-
ing a case.

A word in common block/ISPEC/ used to signal the
value to be assigned to ATOLL format flag IBMF.
The value assigned to KYPE is taken from control
card 1. :

An internal word in subroutine KAT LT used with
Boeing ATOLL tape to signal that the ATOLL block
record corresponding to, simulation block "NBLOC"
has occurred. I is zeroed at the start of each test
procedure,

- 4-59

-,

~ NAME) ‘ ' DESCRIPTION

LBLF A word in common block/NAMS/ used as a flag
in subroutine PRINZ to signal whether the current
test block heading has been printed out when an
ATOLL tape using the Boeing format is being used.

‘ , LBRA = A word in subroutine KATLT used as an argument :
. ' when calling subroutine PRINZ with information .
‘concerning branching ATOLL test instructions.

LCT ' A word in subroutine PRINZ used as a line counter
g ' for controlling the paging and printing of discrepancy
lists. It is zeroed whenever 54 lines have been
printed. ‘

LETF A word in subroutine KATRG used to store and
' - signal when any character other than a number or a
control ‘character has been encountered while proc-
essing the variables field of an ATOLL record. It
is zeroed whenever a number or a control character
is encountered. ‘ '

LIST- .= A word in common block/KNTRL/ used to signal

S CONTRD and DNSINP that the simulation state and
cycle list contained on the simulation tape is to be
processed at the end of the cirrent test procedure .
comparison. Its value is set to 1 at run time from
control card 1 if the state list is to be processed. If
not, it is set to 0. Its value holds for the entire run.

LOST o " A 40 word array in common block/NOPRT/ used to
' ' store any ATOLL predictions encountered which
were included at run time in a pre-specified list of

DI's to be ignored. The array and its associated
counter, NOD, are zeroed at the beginning of each case.

LPRV A common block containing 100 LSDV locations used
- for storing the BCD value data associated with ATOLL
or simulation discretes when printing discrepancy
lists. L

4-60

, _NAME - _ - DESCRIPTION

LRET ~ An internal word in subroutine PRINZ which is set
' to selected values if line counter LCT exceeds 54
when tested at various processing points. The set-
ting provides a means for controlling a transfer to
the paging and title section and a return to the proc-
essing point. :

LSDV - - ‘An array of 100 words in common block/LPRV/

: which is used for storing the BCD value data -
associated with ATOLL or simulation discretes
when printing discrepancy lists. The BCD words
may contain blanks, or the statement "=1.", or
the statement '"=0.". ’

LSSTP A word in common block/NSTEPS/ used to store the
- "~ case starting substep formatted in BCD for print--
out if a ‘case heading is required. It is processed in
subroutine CONVRT from the current contents of
NSTEP.

LSTEP A word in common block/NSTEPS/ used to store
C © the case starting step formatted in BCD for print-
out when a case heading is required. It is proc- _
essed in subroutine CONVRT from the current con-
tents of NSTEP.

" MCAS A common block containing 4 storage locations for
' case data. (NCAS KCAS, KERC, NTES).

MNT o A word in common block ISPEC/ used for storing the
' ' number of test procedures which are to be processed
during the run. Its value is set in subroutine READCD
when control card 1 is read. :

MOUT A word in common block/NGOOD/ used for storing
) _ ‘ the number of DI's which are to be ignored during the
run. Its valueis set in READCD when control card 2
is read, and can be from 0 to 200.

MSSTP A word in common block/JSTPS/ used for storing the
current substep number formatted in BCD for print-
out if information concerning branching ATOLL in-

- structions is required. Its value is set in subroutine
KEPCKZ from the current contents of KAWDS.

4-61

e

NAME

NAM

NAMS.

NBLOC

NBRA

 NCAS

NCT

NDIF

NDIS

DESCRIPTION

A word in common block/NAMS/ used for storing

the name of the current test procedure. It is set

in subroutine DNSINP, and is formatted in BCD
for use when printing out the title heading.

A common block containing 6 stoi'age locations for
test procedure identification and status data. (NID,
NAM, NBLOC, NXTB, LBLF, NSUBT)

A word in common block/NAMS/ used for storing the
starting test block number. Its value is set in sub-

. routine DNSINP with data from the simulation

"BLOCK" record, and is formatted in BCD for use
when printing out block headmgs in subroutine.
PRINZ.

An intefnal word in subroutine KATLT used to
process ATOLL test records for branch data, and
as an argument when calling subroutine PRINZ, ;

A word in common block/MCAS/ used as a counter
for storing the current number of simulation cases
which have been processed. It is zeroed at the

- start of each test procedure.

An internal word in subroutine DNSINP used as a
line counter, and used for controlling the paging
and titling of the printout when a simulation stabe
line is processed :

An internal word in subroutine DNSRDG used as a
flag to signal the value of a simulation discrete
encountered on the current record. The flag is set
negative if the current DI value is 0.

A word in common block/NSDIS/ used as a counter
for storing the number of simulation DI's en-
countered during a case. It is zeroed at the start
of each case.

4-62

NAME

NDOF

- NDOS

NENFG’

" NEXT

. NGOOD

~ NID

DESCRIPTION

- A word in common block/NUMS/ which is set in

subroutine DOSRDG during the first entry in a

case to signal any subsequent entries that initiali-
zation of controls for redundant input data has been
completed. It is rezeroed at the end of each case.

A word in common block/NSDOS/ used as a counter
for storing the number of DO's. during a case which -
were encountered on simulation records labelled

textra'. It is zeroed at the start of each case,

An internal flag in subroutine DNSINP used to sig-
nal that a simulation record labelled "ENTER" has
been encountered. It is zeroed at the end of each

~ case.

A word in common block/NSTEPS/ used as the -
basic control word for correlating the starting and

- ending of the SIMULATION and ATOLL cases. Its

value is set in subroutine DNSINP from data in
word 5 of the first SIMULATION "STEP" record
encountered after a case has been started. The
contents of NEXT are then used by subroutine 4
KATLT to compare with KEPCK in order to locate - -
the equivalent case ending record on the ATOLL
tape. The contents of NEXT represent the end of
the current case, and the starting point for the

next case. When comparison of the current case is
completed, the contents of NEXT are used to up-
date NSTEP for starting the new case. NEXT is
formatted in BCD and contains a 4 character step
number left ADJ and a 2 character substep number

" right adjusted.

A common block containing a count MOUT and a 200
word array NODIS. It is'used if a list of DI's to be
excluded from comparison is submitted with the run.
Data is obtained from control card 2 (and continu-
ations if required). =

A word in common block/NAMS/ used to store the
identification word for the current test procedure in
process. Data for the word is obtained from the

- current position in array IDA, and is formatted in BCD.

4-63

NAME

~ NINFG

NLIM

NNFG

" NNUM

NOD

'NODIS

DESCRIPTION -

An internal flag in subroutine DNSINP used for
signalling that a SIMULATION record labelled
"INPUT" or "EXTRA" has occurred. It is zeroed
at the end of each case. '

A word in common block/NSDIS/ used as a signal
flag if the specified storage limit for 100 DI's in

a case is oxceeded. If exceeded, each excess DI -
encountered is stored in the flag.

A word in common block/NUMS/ used as a flag

and temporary character storage cell during the
processing of discrete names on SIMULATION
records. It is set in DNSRDG or DOSRDG when
a BCD character 9 or less is detected, and
zeroed when any character 10 or greater is
detected.

‘ A word in common block/NUMS/ used as temporary.

storage while building up the numerical name
designations for discretes encountered on SIMU-
LATION records. It is used in DNSRDG for proc-
essing DI's, and in DOSRDG for processing re-

_ dundant DO's. The word is formatted in BCD,

and will contain a 4 character numerical discrete
designation right adjusted and zero filled.

A word in common block/NOPRT/ used as a counter

for storing the number of discretes encountered .
which at run time were included in a prespecified -
list of DI's to be ignored. The word is zeroed at .
the start of a case, and is used in conjunction with
array LOST. ‘ -

A 200 word array in common BLOCK/NGOOD/ used
in conjunction with MOUT for storing the numerical
designations of any discretes which are to be ex-
cluded from comparison. The data is processed in
subroutine READCD from data on control card 2
(and continuations if required). Each word used in

~ the array will be formatted in BCD and will contain

a 4 character numerical discrete designation right
adjusted and zero filled. The array is unchanged

~during a run.

4-64

- NAME

NOK

. NOPRT .

" NPAG

NRDF

" NSDI

NSDIS

DESCRIPTION

An internal word in subroutine COMPAZ used as a
counter for storing the number of simulation dis-
cretes which were not corroborated by ATOLL
predictions. It is used to reset the counts in NDIS
or NYC after comparison is completed.

A common block of 42 words reserved for counting
and storing any ATOLL predictions which were in-
cluded at run time in a prespecified list of DI's to -

‘be ignored. It contains counter NOD, a 40 wo‘rd' -

array LOST, and an entry flag KOVER.

A word in subroutine DNSINP used as a page counter
for use when a simulation state list is processed for
printout.

A word in common block/NUMS/ which is set in
subroutine DNSRDG during the first entry in a

case. It signals subsequent entries that initiali-
zation of controls for storage of simulation DI data
has been completed. It is rezeroed at the end of

each case. .

. A 100 word array in common block/ NSDIS/ used for.-

storing the name and value of each DI encountered
when processing simulation "ENTER" records dur-

- ing a case. Each DI is assigned a word in sequence.

The DI value is stored as 2 BCD characters left
adjusted in the word. The numerical DI designation
is stored as 4 BCD characters right adjusted in the
word. For printout, the value characters are re~
placed by the designator "DI". The array is zeroed at
the start of each case.

A common block containing NDIS, 100 NSDI loca~
tions, and NLIM. It is reserved for storing proc-
essed SIMULATION discrete data during a case. It
is the SIMULATION counterpart of the ATOLL -
KADIS block. i

4-65

- NAME

- NSDO

" NSDOS

'NSFG

~ NSTEP

NSTEPS

NSTPF

DESCRIPTION

1

A 20 word array in common block/NSDOS/ which
is reseérved for storing the numerical designations
of DO's encountered on SIMULATION "EXTRA"
records during a case.’ It is used in conjunction
with counter NDOS, and is zeroed at the start of -

- each case. .

“A common block containing counter NDOS and 20

word array NSDO. It is reserved for counting and

. storing discrete output data encountered on simu~

lIation records labelled "extra" during a case.

" A word in common block/KNTRL/ used as a flag

to signal that a particular test procedure is in
process on the simulation tape. It is set when the
particular test procedure name (NID) has been
located on the simulation tape, and is zeroed out
when a subsequent record.labelled "END" is en~
countered. o

A word in common block/NSTEPS/ used as the
initial case starting correlation word when proc-
essing a test procedure. Its initial value is ob-
tained from the first SIMULATION "STEP" record
encountered and is subsequently used in subroutine
KATLT to locate the equivalent initial case starting
record on the ATOLL tape. The value is updated
with the current contents of location NEXT when
each subsequent SIMULATION case is started.

" The word is formatted in BCD and contains a 4

character step number left adjusted anda 2
character substep number right adjusted.

A 6 word common block containing NSTEP, NEXT, -
LSTEP, LSSTP, KEPCK, KHOLD. Itis N
used for storing test procedure step and substep

data, and for correlating the processing of a case
from the SIMULATION tape and from the ATOLL

. tape.

A}

An internal flag in subroutine DNSINP used to signal
that the initial case is started. It is set when the
first SIMULATION "STEP" record is encountered at
the start of the test procedure. It is zeroed at the
start of each test procedure.

4-66

NAME

NSUBT '

 NSWDS

" NTES

NXTB.
NXTF

- NYC

DESCRIPTION

A word in common block/NAMS/ which is used as
a flag to signal if a subtitle for the current case is
required. It is set to zero at the start of a case.
The flag is set to 1 in subroutine PRINZ during the
first entry in a case. It signals subsequent entries
in the case that the case heading has been printed.

A common block of 20 words used as the input
buffer for storing each 20 word SIMULATION tape
record as it is being processed, '

A word in common block/MCAS/ used as a flag to
signal if a discrepancy has been detected. It is set
with the value 1 in subroutine COMPAZ if a dis-
crepancy is uncovered. The flag is then tested in
subroutine CHEKZ to determine if a discrepancy
listing will be required. It is rezeroed after each

discrepancy list is processed.

A common block of 4 words used for temporary
storage while processing discrete names encounter-
ed in SIMULATION records. It consists of NNFG,
NNUM, NRDF, and NDOF.

A word in common block/NAMS/ used as temporary
storage for ATOLL block number data when proc-
essing SIMULATION "BLOCK" records for Boeing
test procedures. The word is formatted in BCD.

An internal word in subroutine KATLT used as a
flag to signal a case entry that the ATOLL case
starting record was already read in and stored in
KAWDS at the end of the preceding case. '

" A word in common block/NYCLES/ used as a~
 counter to store the number of SIMULATION dis-

cretes which were encountered more than once dur-
ing a case. The counter does not increment above
10, and is zeroed at the start of each case.

4-617

v - 'NAME

~NYCLE

NYCLES

>

DESCRIPTION

A 10 word array in common block/NYC LES/ used
to store the names of any SIMULATION discretes
which were encountered more than once during a
case. If more than 10 recurring names are en-
countered, the last name encountered will be placed
in the 10th word. Each word stored is in BC.D

~ format. The array is zeroed at the start of each

ca-se.

A common block containing a counter NYC and a

10 word array NYCLE. I is used for counting and
storing any simulation DI's which appear more than
once during a case.

4-68

SECTION

>

Y

s

DNS TRANSLATOR PROGRAM

' CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION

AUTHOR:

PURPOSE:

RESTRICTIONS:

STORAGE:

TIMING:

s

DNS TRANSLATOR PROGRAM

A. R. Stone

- Convair division of General Dynamics

The DNS Translator 4Progran'1 substitutes expanded
definitions or actual hardware nomenclature for the

" coded variable names contained on the output tape from

a previous test procedure simulation. If produces a
translated printout and, if desired, a translated copy
of the output tape.

1. The programs must run on an IBM 7094 with IBJOB
systems capabxhty

2. In add1t1on to system input and output, three magnetic

tape units are required. (Two for BCD input use, and
one for BCD output use). :

3. The maximum number of dictionary names which can
be supplied is 4000. The maximum size for any name
definition is 24 BCD characters.

The program and its associated buffer storage area extends
consecutively from core location 3064)_ to 67722) . The

; . 8
program consists of the following three sub-programs:

1. DNSINP Driver, and simulation tape reading
and writing routine (Fortran IV).
2. DNSRDG * Locates simulation names in dictionary
| list (MAP).
3. READC Reads and stores a dictionary of names

vs definitions (Fortran IV).

The program processes approximately 1000 fo 2000 records -

per minute depending on control options specified.

USE:

A simulation output tape, a control card, and an inptit
dictionary containing names versus desired definitions
are required to set up the program for operation. The

- simulation output tape, previously created duringa =
simulation run, contains a history of actions and reactions,

and state lists, resulting from stimulating the DNS model
with inputs derived from an appropriate test procedure.

" The code names which appear in the simulation output are

essentially ‘nicknames' used in place of the full names

of system hardware (locatable on the schematics) when

the DNS Model was constructed. These code names are
limited to one IBM word for simplicity and conservation

of computer memory. In order to make the results more
meaningful to users interested in a greater level of

detail than comparison of DO/DI relationships, the DNS
Translator Program permits reverting from the 'nicknames’
back to fully locatable hardware names of up to twenty-four
characters. °* : o

2. A typical operational card deck setup is:

$J0B
- $PAUSE o B} ‘ '
$ATTACH A5 (Output save tape)
$AS - SYSCK1, HI
$ATTACH B6 (simulation results) :
$AS ' ' SYSUT6, HI]
$ATTACH A7 (dictionary tape, if used)
$AS SYSUTT, HI
$EXECUTE IBJOB
$1IBJOB GO
 (DNS Translator Binary Program Deck)
$DATA
*NAMES
(Dictionary Card Deck)
*END NAMES
7/8 (EOF)

3. Control card usage is as follows:

*INPUT

*NAMES

This card is only used if the dictionary

" card images have previously been stored
on a special input tape. If used, it will
be the only data card, and will be fol-
lowed immediately by the 7/8 end of file
card. The control label, *INPUT is in
card columns 1 thru 6. Thé asterisk

- must be in column 1.

This card signals the start of the input’
dictionary, and must be present.

The card format is:

Col 1 thru 6
Col 7 thru 12
Col 13 thru 18

Col 19 thru 24
Col 25 thru 30

Col 31 thru 80

*NAMES
BLANK
May be blank, or may contain LIST 0 or -
HISTOR. LIST 0 is used if only the state
lists are to be translated. HISTOR is used
if only the simulation history is to be trans-
lated. If blank, both the history and lists
will be processed.
May contain anything : :
May be blank, or may contain "B1", If
columns 25 and 26 contain "B1", a flag is
set to signal that the tape being translated
is a standard system print which already con-
tains titles and page numbers. If blank, the
normal simulation output tape will be trans-
lated, and titling and paging control will be
used for the printout.

Blank

' ,-The 1ﬁput dlctlbnary cards immediately follow the *NAMES
card, and contain one varlable per card in the following

format

Col _1 to 6

Col 7 to 12
Col 13 thru 36

Col 37 thru 80

The code name for the varlable

Blank

As many columns as required to fully des-
cribe the variable.

Blank

5-3

METHOD:

1.

*END NAMES This card signals the end of the in-
put dictionary, and must immediate-
ly follow the last dictionary card.
The control label *END N must be in

. columns 1 thru 6. :

The program first reads the cards following the ¥DATA
card. If the first card contains the control label *INPUT,
the program initializes an input tape wit and sets a flag
to enable reading the dictionary cards (surrounded by

the *NAMES/*END NAMES cards) from the special in-
put tape, and proceeds to 2. I the first card does not
contain the *INPUT label, the program proceeds to 3

and continues processing cards from the standard load
tape.

A card image is read in.

. If the names in progress flag has already been set, the

program goes immediately to 4 to process a dictionary
card. If the flag is not set, the program checks for the

- *NAMES label. If the *NAMES label is absent, the pro-

gram returns to 2 for the next card. When the *NAMES
label is encountered, words 3 and 5 are checked for pro-

‘cessing labels, and appropriate control flags are set to

perform the specified processing of the simulation his-
tories, simulation state lists, and output save tape. The
'names in progress' flag is set, and the program returns

to 2 to begin processing the input dictionary.

If the *END NAMES label is encountered, the 'names in
progress' flag is reset to a final value (2), and the pro-
gram proceeds to 5 to process the simulation results. If
the *END NAMES label is not present, a name counter is
incremented, and the code name from word 1l is stored
in the next position in a NAME list. The four word defi-~
nition field is checked, and if a definition has been in-
cluded, the data is transferred to the four word group
assigned to this code name in array NTRAN. If no defi~

~ nition was included, the code name itself is used as the

5.

definition, and is transferred to the assigned group in
NTRAN. The program then returns to 2 for the next card.

A record from the simulation results tape is read in.

6.

10.

If the "LIST" flag is zero (has not been set), the
program proceeds fo 7. If the LIST flag has been set,
the program skips to 12.

If the ID flag (INUM) has been set, the program pro-
ceeds to 8. If the ID flag is zero, and the record con-
tains the *NAME label, the ID flag is set before the
program proceeds to the print routines in 10.

The record is checked to see what simulation label

it contains. If it contains a simulation history label
and the history confrol flag has been set, the program
proceeds to 9. If the history control flag is zero, the
program skips to 10Q.If it contains the state list label,
the program proceeds to 11. If it contains the "End

- of Simulation" label, the "ID" flag value is set to

signal completion of the translation, and the program
then proceeds to 10. If it contains no label, the program .
proceeds directly to 10,

The code name is processed for translation. The code
name (of the variable) contained on the simulation
record is compared to the list of code names in the
NAME list previously processed in 3. If the code
name is located, the corresponding 4 word group from

. NTRAN is substituted for the code name on the record,

and the program proceeds to 10. I no match is found,
the program proceeds directly to 10.

The print controls are checked. If an output save tape

" is to be created, the processed - simulation record is .

written on the save tape before continuing. The input
tape flag is checked, and if a standard print tape is

- being translated, paging and title controls are bypassed.
. If the tape is the simulation output tape, the line count

is checked and if zero, paging and title printing is
accomplished before writing the processed simulation

. record for the standard system print. The input tape

flag is again checked, and if a standard print tape is
being translated, line count incrementing and checking
is bypassed. If the tape is the simulation output tape -
the line count is incremented, checked and zeroed if it
has reached 50. The ID flag is checked and if it has
been set to signal the end of the translation, (Refer to 8§),
the program cleans up and exits. If not, the program ’
returns to 5. -

5-5

INPUT FORMATS: ,

OUTPUT FORMAT:

11. The state list controls are set. If the list control flag

"~ .is zero, the list is not to be translated, so the program
skips directly to 10. If the list control flag has been set, -
the 'List in Progress' flag is set before proceeding to
10. '

12. The state list is processed. If the record contains the
*END LIST label, the 'list in process' flag is zeroed,
and the program skips to 10. If the record is not |
blank, the program proceeds to 9. If blank, the pro-
gram goes directly to 10.

Figuré 5-1 represents the format of the Simulation OQutput
Tape and standard output print from a portion of a typical
simulation run. The variable names associated with the
simulation history labels "input" and "enter", are repre- .
sentative of the '"nicknames'" used when constructing the
DNS model. The vertical bar has been added to highlight -
variables whose dictionary cards have been included in

. Figure 5-2. These variables are highlighted to demonstrate

the translation technique for obtaining the output shown on
Figure 5-3. . ' :

Figure 5-2 represents part of an input dictionary which will
be used in conjunction with the Translator Program to re-
process the Simulation Output Tape. The input dictionary
may be in the form of a card deck, or it may be an input
tape containing card images of the input deck. The first

~ word on the card is the code name or 'nickname'. The

third, fourth, fifth, and sixth words are available for the
associated definition. These cards represent the results of
adding definitions to the basic name cards created previously
by an associated program (reference Section 2 , DNS Name/
Time card Generator). The card for variable DI122 is typi-
cal of a basic name card. Since no definition has been added
in for this variable, its code name would be used as its trans-
lation name. ’ ’

Figures 5-3 and 5-4 represent the format of the standard out-
put print after translating the Simulation Qutput Tape of
Figure 5-1. The vertical bar has been added to highlight the
variables whose dictionary cards were included among the
group shown in Figure 5-2. A comparison of Figures 5-1

and 5-3 shows that the only discernible changes are to the
names of variables which have a definition included in the
dictionary. If no dictionary card was supplied, or the defi-
nition field for the variable was left blank, the output record
will be identical to the input record. '

5-6

BDOBZH.M.H NrMO.Hme ZOH.HﬁDSHm 1-¢ ean3rgy

ﬂ e . — B
_ b 1 zz11a Y3AINH
g 1 12710 YIINT™
9 1 L8110 YIANT
B 1 6110 Y3IINZ {
6 1 8€T11d ¥3ING |
01 T 90610 YIINT
11 1 50610 ¥IING
4 | 1 98110 YIAINT .
€1 1 58110 ¥IINT
%1 T ¢w4~g1111111¢m~2ma|:
G1 1 cs11a ¥3IINT
91 1 ¥6T1a WIINT
L1 1 £€6110 ¥IINS
4 1 %0610 ¥IINT
r4 0 81290 CINdNT G
t 0 L1260 INANT
Y 1 65110 ¥IING
5 1 2LEIa YIINS W
9 1 20610 Y3INZ
z 1 £0610 431N “
8 1 czZ11a ¥3UINS
6 1 — 42110 YSINT I
v) - 1zzea 1ndNI |
- S —0 o-aa111||1uhnmzns1;
01 1 ZL11a ¥3INE
e 11 1 0LTIO YIINT
6 - 1 €LT110 E LR
= € 1 12110 YIINT -
8 1 €L1¢0Q INdNT
s z 1 1,120 —INdNT
11 0- gL110 EREIVE!
- Z1 0 - 11110 YIINT
€T O 9L110 YIAN3
e 8 1 ~6l180 T LNANITT

it e

1S17 QVIHs

[

*(reordAy) yosp paes Lreuoriord wu..m oansr 3

0

08 60 6L L0 81 SL YL LIZL HLOLESE3 90363907813 036 05 45 83 C5 v CO TS IS OREN Y L Oy CroN Ch Iy IOV EL SD LC AL CEITECIEIC OC KL _Nﬁn.n_n—o__m_!n.u_ wene ot

mmmmmammmmmmmmmmmmmmmmmmmmammu 55666666656666066666666 mmmmmjmmmm LR
§883660068°089258888083888820008868888383888888868888868080960620888808p/88888888/586388
. -h~n---n~h--~Nnhn--~h---nn-hﬁn~N--N~N-~hhhhﬁﬁnnnnz---~n-n-h

= _mmmmmwwmuuummm

G\fvn

Ty =~
rEys
@on
reld
mng
25%

o

L5

SHARE 702 SYMBOLIC CARD
" SHARE 709 SYMBOLIC CARD

SHARE 709 SYMBOLIC CARD

30LIC CARD

09 SYM

99999995/99995999999999999999999999906999999992969599998098959989999
mmmmmmmmmmmnmmmmmmmmmmmnmmmmmmmmmmmwmmmmmmmmmmmmmmnmmmmmnmmmmmnmm%mmmmmmmmmummT
wwq*weoqueeeevvveeewovowvevvewe«wwevoewvﬁeeeveevoqeqeevqeeovevvﬁveqvq»quwvﬂev
mmnmnmnmmnmmmnmmnmnnmnnnnnnmnnnnnnmnmmnnnmnnmmnnmnmnmmmnmnnnmnmmrnnnnmmnmmmmmmm
N-NNNN~NNNNNNNNNNNNNNNNNNN«NNNNN~N~NNNNNNNNNNNNNNNNNN«NNNNNN~N~§NNNNNNNNN:NNNN

120LIC CARD
SHARE 709 SYMBOLIC CARD

SHARE 709 SYM

__—_—w—__—_—___—____n——_n,_-____-_____._~__w_____p__-__~”____-_:p__—~__"___pm

08 0L 8L LLBLSLHL T 2:.a‘nunuhoowﬂ-a..ug_uooﬂﬁhn-mmsﬁnn«m333aw:S3393.-gnnwnﬁanmnzunan.htnr?mwﬁu«g-nn«w«_:.«m.2 nosteieritnol e slLja sy ¢

oaaeoccaaccccaecemccooonaceccaeeaoao=cac=aocacaacoaamccooaocaaaaasacoaaaoguoaa
- . , — .
J3gv1 SHYYHIY : € | NROD 7 INIW3U03Q ‘OVL *SSIMAQV| NOILVHILO
‘ !

.)
Y " !
4 (S
HEN TR T ME. __
A
T TR

SHARE 709 SYMBOLIC CARD
o A P T i

T C3 e -

SHARE 709 SYMBOLIC CARD

(i

-

{

SHARE 709 3YI'EOLIC CARD

SHARE

_

; , |

- o b odou Uodd
. GE HYOfH 3 denwil 291

. o U i g Cp i

HCH HT MO 1R04 - PATIT
) | 0

.] NI by

5-8

*gnojurad £x03s1y uorjEINWIS paje[suer), ‘-G oamStd

: i
1
4 0 SEHS*NT313¥3S10€2TIQ WIINT
13 0 . zz11a YILN3 % {
% 0 o TTT2ZTHS TUNO TYIMEI=TZIPNIC T ¥IINT W o
S 1 A . 6STBNIQ - ¥ILIN3 L.
1 U IBTIBNIT a31INZ
9 1 2060N1Q ¥3IN3 .
s 0 6STANIT " WIINT
01 0 906@N1Q - ¥IUIN3 ¥
TT——70 'G06@N10 ¥IINT T
T2t 0 $06ON1Q ¥3IN3 ot
el 0 98TPNIT H3INT n
51T 0 SSTIPNIQ ~ YIINZ w
ST 0 %81BN10 —Y¥31IN3 M
91 0. GGTENIQ . - ¥3ILINS :
—11 0 $STENIO™ YIINT ™
.81 O €STENIA CY3AINS -
e —y—0 Z060N1Q ITINT =
R - 0 6€ 1PN 10 o Y3ANS
: 9 —0 : I BETANIQ—¥SINZ I~
SR — 1 1 R P © L1Z@Nea - INdNT .
e s — — 00SEET ™ BN d31S¥ w7

*mojurxd 3s1] 9e)s UOIRINWIS paje[sueL], ‘-G 9In3rd

5-10

— -y o SR e — : 091PNIO "%t
€ °1 = 6STEN1Q vE
0 1 = 8STBNIT tE
0 ‘1. = LS1ENIC 2¢
0 1 = 9STENId 1€ :
S . °1 = SS1pNIa o€ |
S *1 = $S1ONIQ 62
g .1 = €5TENIa 82
4 *0 = 6€TENIQ 1z
A *0 = 8ETPN 1A 92
| T T = LETENTO T4
W 1 1 = 9€T1ONIq %2
0 0 = SET1ON1T €2
w 0 0 = »€1ON10 r
/ 0 MY = €EIBN1Q 12
W 0 *0 = ZE1oNIa 0z
» 0 0 . = “TeTZNIT 61
| 0 0 = OcTgNIa 81
M 0 —~0 = 621ONIQ 11~
..0 0 = gZ1oN1a 91
0~ Y = LZTENIa b3
0 0 = 9Z1eNIa 91 .
1 -1 = v SZ1@N1a €T
T ‘1 = VS% HS M@ 13nd - H2Z11Iq .2t my.
— g *1 = SEHS *NIT313¥ISIO€2T10 1T
S °1 = e zel1a ot Y :
'3 t = ~ZZ HS SN YIMPE="T1ZTBN1Q s i—
0 °0 = 05 HS 444@ ¥3IMEL-0210NIQ g i
0 -0 = 611BNIO I —
0 0 = 8T1BNIQ 9
R *0 = L11oN1Q S
0. 0 = , 911oN1Q by
e Q 0 = S119N1Q €
0 .0 = »110NIG Z m
N 0 _ = — T €11ON10 1 _
0 0 ardt Z . *eN sv88 1ST7e

.mmqu>u

0

}uRPEruxuczx

'PROGRAM FIOW CHARTS

5-11

OuTPUT
TgPE

REHIND

 BREGEDING PAGE BLANK NOT

’ WRI
- EOF ON
OuTPUT
TQPE

TE

REWIND
uNIT
o s

—

REWIND
DNS
TAPE '

1

2414
CLEAN UP
AND EXIY

' Figure A-1. SUBROUTINE DNSINP (L of 4)

a

- 5-13

READ
- SiNMUL.
TAPE
RECORD

1S
INUM
GTR.OTHAN.'

CHECK '
SIMULAT |ON AR
LABEL * A3/

PROCESS
TITLE

RECORD

SET INUM
= 2 AND

1ERO
LINE COUNT

Figure A-1. SUBROUTINE DNSINP (2 of 4)

5-14

e L

T
INUM = 9

ZERO. OUT
~ LsFe

- SET
LINE COUNT
=D‘.
! LOCATE
DICT | ONARY
NAME
e
1S
FIRST WORD
BLANK
T
PROCESS
DICT |ONARY
NAME FOR
PRINT OUT

Figure A-1. SUBROUTINE DNSINP (3 of 4)

5-15

7

~ INCREMENT
PAGE COUNT

INCREMENT
Ler

SET
Lr =0

Figure A-1. SUBROUTINE DNSINP (4 of 4)

-

5-16

1 3

N ENTRY

INITIALIZE
'SEARCH KEY

INITEALIZE
. _SEARCH
REGISTERS &
SET _ENTRY
FLAG

' CHECK WORD
LV ol ackinst

- DICT | ONARY
NAME KEY

STORE NAME
KEY IN
SEARCH KEY -

COUNTER FOR
NEXT NAME
KEY

INCREMENT - -

ALL
NAMES
CHECKED

STORE ZERO
IN SEARCH
KEY

Figure A-2, SUBROUTINE DNSRDG (L of 1)

Y

5-17

 RETURN

gt

. NAME FLAG &
© - 'NAME COUNT

" 2ER0 OUT
TAPE KEY

REWIND
DICY |ONARY
TAPE ,

SET .
TAPE KEY
= 10

IS
LABEL
*NAMES

Figure A-3. SUBROUTINE READC (1 of 3)

5-18

Is SET NAMES WRITE OUT
WORD 1 = NamcY
*END NAME. FLAG = 2 o
INCREMENT
NAME COUNT
- . REWIND
STORE NAME DCT [ONARY-
_ NAME LIST TAPE
STORE
NAME CODE
IN WORD 1 OF
DICT IONARY

_ STORE - STORE WORD
N auan, ™ W 3ic¥agugnv‘
- DICT IONAR :
'f} WORD 2, 3 & 4

Figure A-3. SUBROUTINE READC (2 of 3)

5-19

Rt

SET .
NAMES FIiAG ,

!

WRITE
- NAMES

A8
WORD 3
"LIST o

1§
HORD 3
"HISTORY"

RECORD ./

SET LIST = 1
SET NNFG = 0
AND NTES =,0

" SET NNFG = 1

SET LiST = 0
AND NTES = 0

- SET. .
LIST = 1 .
NNFG = 1
NTES = 1~

SET
NTYP = §
FOR STD,
PRINT TAPE -

5-20

Figure A-3. SUBROUTINE READC (3 of 3)

D

1.0

The following is an alphabetzcal 11stmg of the terms used in the DNS Translator

APPENDIX B

GLOSSARY OF TERMS

. INDEX OF VARIABLES

Program
- NAME DESCRIPTION
IN ’ Input name counter,
 INONE Entry flag.
INUM Translation flag.
- KARD ‘Data input buffer. -
~ KODE Name.code.

“LCT Line counter.

- LIST - Simulation list flag.
LSFG List processing flag.
NAMCT - ' Name count.

NAME Simulation name.
 NBUF . Spare word. -

- NNFG Simulation history flag.
NPAG Page counter, :
NSWDS Simulation I/0 buffer.
NTAPE Input tape flag.

NTES Output tape flag.

- NTRAN Dictionary name.

NTYP Input tape flag.
2.0 - DEFINITIONS

. NAME DESCRIPTION

IN A word in subroutine READC used as a counter to

store the number of names read when processing
the Dictionary data (cards or tape) supplied for
-the run.

5-21

NAME -

" INONE

INUM
'KARD

~ KODE

LCT ‘

. LIST

DESCRIPTION

A word in subroutine DNSRDG which is set during
the first entry to signal subsequent entries that

" initialization of the name search routmes has been

accomphshed

. . A word in subroutine DNSINP uéed as a flag to

signal that translation of a simulation output tape
is in progress. The flag is set to 2 when the
simulation *NAME 1label is encountered, and is

~in turn set to 9 when the end of sxmulatlon *$$95%

label is encountered.

A 15 word input buffer containing a 14 word array

KARD and an end buffer word NBUF. It is used
in subroutine READC for temporary storage when
processing the program data and dictionary cards

T ortape.

A word in common block / NTEST / used as a signal

and to store the reference position at which an.

. encountered simulation name was located in the

dictionary list. If the simulation name was not in-
cluded in the dictionary list, the value is set to
zero. ' o

A word in subroutine DNSINP used as a cofinter for
storing the number of print lines processed. It is
tested before writing, and if the count has been
zeroed, paging and titling instructions are activated.
It is incremented and tested after writing, and when

- the count equals 50, LCT is rezeroed. It is also

zeroed if specified Slmulatlon Control Labels are

e encountered.

A WOrd in common block /NAMEL/ used as a flag to
signal whether names in the simulation state lists.

-are to be translated. The flag is set to 1 or 0 in sub-

routine READC when the *NAMES card is read, and
is later used by subroutine DNSINP to select an ap-

. propriate processing path. It is set to 1 if the third
~ word on the *NAMES card is blank or contains a "List

0" label. If not, it is set to 0. If set to 1, the state
list is to be translated: If 0, it is to be copied exactly
as it is.

5-22

;! TN AN E P TR I SR VP Aee e

' NAME - DESCRIPTION

- LSFG ~ - A word in subroutine DNSINP used as a flag to

- - - signal that a Simulation State List is being pro-
cessed. It is set when a Simulation '"*LIST"
Label is encountered if the LIST flag has also been
set, and is zeroed when a succeedmg *END LIST
Label is encountered.

NAMCT -A word in common block /NAMEL/ used to store
o ' - the number of names which were contained in the
Dictionary (cards or tape) used for the run. Its
value is set in subroutine READC from the final
value of counter IN, and is used in subroutine
DNSRDG when initializing name search routines.

'~ NAME A 4000 word array in common block /NAMEL/

: used to store the list of Names being defined in
the Dictionary. The array is used in conjunction
with counter IN in subroutine READC whenthe = . :
Dictionary data is read in. Each Name is stored ‘
in BCD format in a consecutive position in the

. array, and its associated 4 word definition (frans-
lation name) is stored in array NTRAN.

" NAMEL - A 20,003 word common block reserved for stor-

- ing data associated with processing of Dictionary
names, and translation names or definitions. It
contains LIST, NNFG, NAMCT, a 4000 word
array NAME, and a 16,000 word array NTRAN.

NBUF A word in common block /KARD/ included for
future use when using chtlonary da.ta tapes ha.vmg
~a 15th data word

NNFG A word in common block / NAMEL/ used as a flag
. to signal whether names in the simulation history

(action and reaction table printout) are to be trans-
lated. The flag is set in subroutine READC when
the control cards are read, and is later used by
subroutine DNSINP to select an appropriate pro-
cessing path. It is set to 1 if word 3 of the *NAMES
card is blank, or contains the label HISTOR. If word
3 contains LISTO, the flag is set to 0. I set to 1,

5-23

' NAME

' NPAG

NSWDS -

Ct ey A e

 NTAPE

NTES

NTEST

. NTRAN"

DESCRIPTION

 the histories are to be translated. If set to 0, -
~ the histories are merely to be copied.

A word in subroutine DNSINP used as a counter
for storing the page number to be assigned to
each page of the program printout.

A 20 word input buffer used in subroutine DNSINP
for temporary storage of a Simulation tape record,
used in subroutine DNSRDG when conducting the
name search, and again used in DNSINP as the

Output Print buffer.

- A word in subroutine READC used as a flag to sig-

nal that the Input Dictionary is to be read froma
special Input tape. If is set to 1 if the first data
card is labeled *INPUT, and all further Dictionary
data will be read from the special Input. If 0, the

data is read from the standard load tape.

A word in common block /NTEST/ used as a flag

to signal that the program results are to be stored
on an output save tape. It is set to 1 in subroutine
READC if word 3 of the *NAMES card is blank.

If not, the flag is zeroed. The flag is used by sub-
routine DNSINP to select an appropriate process

~ ing path.

A common block of 3 locations contammg KODE,
NTES, and NTYP.

A 16, 000 word array in common block /NAMEL/

used for storing the 4 word (up to 24 BCD characters

. maximum) definitions or translation names associ-
- ated with each name contained in array NAME. A
- word in common block /NTEST/ used as a flag to

signal whether a Simulation Qutput Tape or the
standard system printout is to be translated. The
flag is set to 1 in subroutine READC if the 'Bl'
label is encountered on the control card. If not,

~ the flag is zeroed. The flag is tested in subroutine

DNSINP to select the appropriate processing path.

5-24 -

gt

SECTION

6

DTC/REFTAB PROGRAM

CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION

AUTHOR:

PURPOSE:

RESTRICTIONS:

STORAGE:

6

DTC/REFTAB PROGRAM

A. R. Stone .

Convair division of General Dynamics

The DTC REFTAB Program was written to provide a.
printout of variable names and reference data contained _
on the AMA Model tape generated by the Down Translation
and Culling Program. The printed data contains essential
information on inactive variables in the model, and is
useful to the model builder in validating the AMA Model.
The AMA Model tape contains a reference table wherein
each variable has been classified as an Initiator,
Transactor or Terminal and assigned a failure analysis
candidacy. This program will read ine DTC AMA tape,
locate the equation and reference tables, convert the data

- to BCD and print a listing of the variable number, three

letter code, engineering name, variable type and fai_lure
classification. ’

1. The program must run on an IBM 7090/94 with IBJOB
systems capability. : ' '

2. 'The program must be used with an AMA Model tape

previously created by the DTC Program. The model
cannot contain more than 4000 variables.

The program occupies 13, 358). 0 consecutive core locations
beginning at 03004) A and ending at 35062) , and consists of

. 8 8
the following seven sub-programs.

1. CONTRD Driver

-2. DTCINZ Tape data location and read in
3. ERRMEX Error message printing
4. MANIZ Data formatting for print

USE:;

METHOD:

5.
6.

7.

-

PBCDZ Conversion from BIN to BCD
PRINZ "~ Printing of converted data
TRANL 3 letter variable code conversion

The program does not require any control cards and is

- used as shown in following example of deck setup.

$¥oB

$PAUSE

$ATTACH B6

$AS . SYSUT6
$EXECUTE IBJOB
$IBJOB GO, MAP

' Binary program deck

7/8 (EOF)

DTC AMA BT save tape is loaded as a B6 input as shown in '
proceeding example. The output consists of Bl printout of
information extracted from the tape. :

The program first sets up a Processing Director Flag (PDF)‘
to a value of one (1). '

1.

Sub-program DTCNP is called to locate and read in the
reference table prologue and names totals. The tape is
first rewound to insure start and load point. A counter
(KRY) is incremented as each record is read. KRY is
not checked at this point in the processing, but was
included here for future incorporation record counts and

“error exits. The first word of each record contains the

number of items of data contained in the record. The
second word contains the total number of words required

to store these data items in the record. Each record is
read in the following order: first word NITEMS then
second word NWORDS then rest of record into KBUF, with
the value found in the second word used as the number of
the words to be read into array KBUF. The first word of
KBUF is then tested to see if it contains the label *REFER.
When *REFER islocated, flag KTRAK is set to value of 1
signalling that the record has been located. The values
found in the 18th, 19th, 20th words of KBUF are transferred
into common locations ACTCT, INACT and NAMCT
respectively for subsequent use by the program, and
program control is returned to the driver program. The
flag KTRAK is tested for value of 1 (flag was set to 1 when
the reference prologue record was located). If value is

not 1, a transfer to error print will ensue.

6-2

Control is returned to sub-program DT CINP with the
PDF equal to 2 to signal that the reference table is to be
read. The reference table record immediately follows
the reference prologue, and consists of one continuous
record which is read and stored in array KREF, The
buffer cells NITEMS and NWORDS are zeroed and the
tape is rewound. KTRAK is set to a value of 2 and
control is returned to the driver sub~program., Testing
of KTRAK is repeated with same results upon error

(value other than 2),

The program then returns to DTCINP with the PDF
set to a value of 3 and the tape records are searched

-for the word *NAMES. The NAMES record should be

the first record on the tape so counter KRY is tested
and if it exceeds value of one, KTRAK is set to seven
and an error return to the driver sub-program is initia~
ted. When the names prologue record is found and

read into KBUF, flag KTRAK is set to value of 3 and the
word per record buffer is zeroed. Control again transfers
to the driver sub-program where KTRAK is tested as
before. If KTRAK =3 the PRINT routine is called with
PDF set to a value of 1. A limit value 'M' is set to 1
and the contents of ACTCT are tested. If ACTCT is
found to be zero the value of 'M' is increased to 2. If
value of ACTCT is not zero, value of 'M' remains 1.

' Paging data is initialized and control is returned to the

main driver sub-program. DTCINP is again called with
the PDF now at a value of four,

A names record is read ihto KBUF. The format of the
names record is: word one is the total number of wox_'ds
in the record, word two is the number of items (names)

described in record, word three is number of words in

the record describing names. Each name is grouped

in three to seven word sections. The first word of the
section contains the numerical code number of the name.
Word two will contain 2 number from 1 to 5 stating how
many words are used in the variable name. The rest of
the words in the section will contain the actual variable
name in BCD. There will be as many sections as shown
in word two of the record. The names are transferred
individually from KBUF into array KTAB. As awordis -
transferred to KTAB, it is tested for a single dollar sign

signalling the end of the names. When the dollar sign

5.

is encountered, KTRAK is set to a value of 6 to signaji

that the last name has been read. The Rames are..- . v rwyr vvwn -

placed in a nine by NITEMS array with each name

* being placed in words three through seven of each row

of the array. Each row of the array is given an
ascending sequence number which is extracted from

the first word of each name section in the names record.,
(The second word of each row is reserved for the 3

'letter coded form of the name. Word eight will contain = -

the type classification and word nine will have the zeros
and ones failure candidacy classification), When the
names are placed into the matrix KTAB five words are
used for each name regardless of number actually in the
name. The words not containing data are filled with
blanks. A count of variables read in is maintained in KNT

‘and is compared with that value stored in ACTCT, flag

KTRAK is set to a value of 4 if name count (KNT) is less

or equal to the number of active variables (value in ACTCT), -
If the current name total is more than the ACTCT total,
KTRAK is set to five to indicate that the inactive variables
are now in process. Control is transferred back to the

driver sub-program when the current names record has -
been stored, a '

" Control is transferred to subroutine MANIP where the |

current data stored in the matrix KTAB is converted to
BCD for printout. The first word of a matrix row is-
loaded into the accumlator and reduced by one. This
number represents the numerical code number of the
variable, and will be converted to a coded three letter
name for the variable. To determine the exact three
letters the program transfers to TRANS. TRANS
divides the code number by 26 squared (676), the remainder
by 26, and its remainder by 1. The numbers obtained
are used as 6 bit search keys for a table in core storage.
The table is searched 6 bits at a time and each 6 bits
replaced by the octal value found in the table. When the
number has been completely converted to a three letter -
alpha code, control is returned to subroutine MANIP
where RH zeroes in the code are replaced with blanks
and the word is stored in word two of its row in KTAB.
Word one of the row (code number of the variable) is
converted to BCD in subroutine PBCD. The failure code
classifications are now extracted from the reference
table data previously stored in array KREF and placed in

_the ninth word of the row in the matrix KTAB. Finally

6-4

S
e

the coded classification for variable type is extracted
from array KREF and converted to a BCD word which
in turn is placed in the eighth word of the row in the
matrix KTAB. When reference data for all names in
the current names record have been processed, the .
program transfers to subroutine PRINT,

6. . Printing is accomplished directly from the array KTAB

' one row at a time with spacing to separate data. As each
row is printed a counter is incremented and compared
with the value stored in ACTCT which represents the
count of active variables in the model. When the count
and ACTCT are equal, the paging is set back to 1
and a new page is selected and the inactive variables are .
printed, if any are in the model. This is determined by -
a test of the storage cell INACT which contains the count
of inactive variables in the model. When NITEMS names
from the names record have been processed, the value of
KTRAK is checked. If KTRAK is 4 or 5, the program
transfers to 4 to process another names record. If
KTRAK is 6 the program cleans up and exits,

OUTPUT FORMAT: Figure 6-1 is a sample of a test model that was processed by
: the DT&C program for use in demonstrating the REFTAB
output shown in Figure 6-2. The subtitles listed under the
title represent columns in the two dimensional array KTAB.
Each row is numbered under subtitle NO and is the first
word in each row of KTAB. This number is the numerical
code number of the variable in the DNS model. Under CODE
the three letter code that will be used in the DNS program
printouts is listed. The three letter code will correspond
to the code number of the variable. Variable #1 is AAA
and Variable #26 is AAZ and Variable #17576 would be
ZZZ. The full engineering names of the variables are
printed in up to five words (thirty characters maximum),
Spaces not containing data will be filled with blanks. In the
example, a portion of the variables are named in such a fashion
" as to provide a test reference of the output of the REFTAB

program. Variable #14 (AAN) is named TERM-BOTH
and in this instance has no other meaning other than to
provide an example to show that the program has determined
it to be a terminal and is a faflure candidate for both zeros
and ones. The V.TYPE (variable type) lists the classification
for each variable. TERM-L is a shortened version of
Terminal, as is TRANS for Transactor, and INIT-R for

6-5

‘wexdoad D JIa ‘Supsi] pawo dwyy °‘1-9 om3rg

R Tprp— o e gl = . mis e e o namion s A an a o v

' 12 wnawy s9 S¢ sL1

.
13
N
+
]
1
.
'

SST Sel H1289-1Jv33SNNN

-

6-6

12 wnave S9 . Ss SLT Se1 Sel H1B8-11INI
. 0d__040v0 SO S0 SO SO SO INg-1INI
. 01 ndivo SO - S0 Y] SO) H1g9-NVY1
104 _nd4avo__ sQ SO SO SC SO ING-NVYL

19 1 VO SO . S0 SO SO SO Nvyt
19 1 V0. SO _- S0 SO SO 50 L1INI
19 1 Vo SO) SO.) 43¥4713S
0@ __Nnd41va S0___. SO SO o) SO H199-WY31

081 1Vv0 SO . SO ¢ SO S0 _ 1353y
__OA__ndivo SO SO . so SO SO , WY3LYS
. 0S. 1 1v0 SO . SO_...SO__. SO _ SO____S_ e ASHVOGEVGMS Y
~0S 1 1vo SO SO SO 'S0 S¢ DGHVOGEYSMSY

0A SNIvVO - SO0 . .So SO SO S0 dYErTVEVGTINZ YT

0A sSnive SO . SO SO SO SO dHErTVEVSTININD

03 WNave Ss SY $S9 .. S§ SY
02 Wnave SS& S% _S9 SS SH

33000CTFTSHIVEVSTTINGD
GAVVSTILOYMNTIVEVSTTINGD

CY T n3TIvo SO SO SO SO SO 2SddSITCHNTVEVGTIT 1109

VN NNV NV VIV VY vl nin vin ’

08 1 IVG. SO SO SO S0 . SO 111aTZvevSsTISNgd

08 1T 1IvoO S0 . SO SO SO SO I1101eVsSNyYd .
oX - X Aavo ‘SO SO0~ SO SO . SO d?E€rTVEVSTTITON m
¢l nNd1vo . SO SO SO SO . SO Shel1IQ. :

T 39vd SYYI IWIL OFLVISNVYINMOT=UOIVINATS YYOMIIV 31399510

*mojurad a[qe} 9oudIoJOY °g-9 aIndry

Hig4 sune HL89-12V03SNNN AVY

22
HIge — S=LINY HIg9-11INI nvv 12
Sang ¥-LINI , ING-1INI vy 0z
HIgg d-Nvdl ‘ . HIZ8-NVYl SVV 61
S3Ng Y=-NVHL : . ING-NVYL yYY 81
H1gd I=NVIL , NVYL ovv L1
H128 d-LINI . LINI dvv 91
H179 TINTYS) EEDE N N gvv G1
H108 © O 1-WY¥3L _ HLEE-WY3L NVY 91
H1gg ¥=11IN] ~ N 13539 WYV €1
WY¥31¥S A , WY31YS vy 21

SING J-11NT . , JGHVOGEVGMS Yd AVV 13

d-NViL L dYELTVEVSTINZMD rvyv o1 -

H=NVII dYErTVEVGTINTSNI TVV —6

S3ND d=-LINI o : GYEMEVSNId ~ HVV 8 |
H1d9 T 9—-1INT B 33000¢r1G¥ZVEVGTTINGD. IV L

H198 Y=NVYL gavYVSIrOYNIVEVGTITINGD - dVVY 9

>~ AL09 ¥=NVII . ZSddS IOy NIVEVGITTIgD IV S

"~ H1g8 d=-LINI S . T11Q12vEVSTIISNGd = Qvvy v

H109 ¥=1INT . T1T1drevesngd YV €

. d-=NVuL : dYErTVEVSTTIABN . gvy 2 |

HIgg T=WYST - (L7128 (. AR |

ONVO™3 . JdAI*A : “IWVN 1IN3 3009 "GN .

———— > — -, A IO e e e o & i @A % et ¢ < s e e e —— e e (4 e i A A A et o

TVIVOTIINIEIITY WY¥9p¥d 0%10 TI00W V W V *STTEVIEVA JATIIV

Ry

Initiator. The prefix SR indicates that the variable has
also been classified as a self referencing variable in
addition to other classifications. Variables with four
asterisks printed in the type column are variables that
have been classified as UNUSED by the DT&C program.
Self referencing variables are those that will effect them- '
selves during a simulation. An example would be a spring
loaded push button where the push button was equated in
such a manner as to turn itself off a certain period of time
after an input (initiator) had set its value to one without

a second input resetting its value to zero, TERMINALS

are variables that will not affect any other variables in
the model. They are the ultimate terminus of actions

and reactions as a result of inputs (initiators).
The unused variables are often the results of errors in the
Iogic of the model equations or are variables that are

" actually in the hardware but do not atfect nor are affected by

any other variables in the model. They may be removed without
destroying the valldlty of the simulation. The failure

candidacy is listed under F.CAND and is classified as a

failure for either zeros, ones or both for AMA analysis. .

This classification results from the class code placed in

~ CCT79 of the variable time parameter card and the failure

code listing on the first two control cards of the DTC data deck.

‘The computer time required for a DT&C run plus a

REFTAB run combined are much less than that required for
a Prep Editor run, therefore considerable computer

time is saved by analysis of the information contained in
the listed printout., '

' APPENDIX A

- PROGRAM FLOW CHARTS

¥

CINITIALIZE
PROCESSING

. s
m-L»-m.-

DICINP
. GO FIND
. REF. TABLE

is
PROCE_S? KEY

DICINP
PROCESS
A NAMES"
RECORD

CINP
RE%%-£N§TORE
REFERENCE
TABLE

~ Figure A-1. SUBROUTINE CONTRD (1 of 2)

6-11

B

~ Figure A-1. SUBROUTINE CONTRD (2 of 2)

6-12

REWIND
DTIC TAPE

READ A
RECORD

IS T
REF ERENCE
D

INCREMENT
RECORD
 COUNT

READ AND

v
STORE DIC
REFERENCE - SET PROCESS
TABLE " KEY = 2
AND ZERO
RECORD COUNT

" SET PROCESS
KEY = 2.

e

Figure A-2. SUBROUTINE DTCINZ (1 of 3)

6-13

INITIALIZE
| NAME_COUNT
INITIALIZE AND SET Kev
FOR A .
NAMES
RECORD

INCREMENT
RECORD-
COUNT

18
RECORD COUNT

REWIND
TAPE

' RETURN :

™y ' Figure A-2. SUBROUTINE DTCINZ (2 of 3)

6-14

READ A
NANES
RECORD

“ANY NAMES
10 BE
XFERRED

| NCREMENT
NAME AND
LOCATION
COUNT ERS

- 18 NAME

A% sien

INCREMENT

MATRIX
TABLE

. COUNTERS

§

XFER NAME
TO MATRIX
TABLE

y Y '}
‘ NAE COONTS
SEL 5£Y SEl §EY BY 1 AND
' ' SET KEY = 6

Figure A-2. SUBROUTINE DTCINZ (3 of 3)

6-15

Figure A-3. SUBROUTINE ERRMEX (1 of 1)

6-16

" BTAIN
SET UP
PROCESS ING. | - REFERENCE |
COURTERS - - |. CODE WORD
IDENT IFY
1 © FAILURE
OBTAIN . . MODE CODE
OCTAL R .
NAME

CODE -‘ ‘L

CONVERT T0 ¢
© DESCRIPTION
- AND STORE IN
" MATRIX TABLE

¥

TRANS
CONVERT
70 3 LEITER

CODE

' . joamiey
eLﬁgEslﬁno CLASSIFICATION
STORE CODE .CODE

NAME IN - .

MATRIX . - é
CONVERT TO

cgggghr AND STORE IN'

OCTAL NO, HATRIX TABLE

T0 BELD :

!

¥
v '~lngnenﬁgr A:§M2§L
NAME A
séggg ?gu’ STORAGE PROCESSED
MATRIX COUNT ERS
TABLE

RETURN

Yo | Figure A-4. SUBROUTINE MANIZ (1 of 1)

6f17

l.'

(- ENTRY

INITIALIZE -
CHARACTER

ZERO QUT.

" COUNTER AND . |

BCNUM -

DIVIDE -
OCTAL
NUMBER
BY 10

'

 PROCESS

“WAS THERE
REMAINDER

INCREMENT
BCD CHAR.
COUNTER &'

" PUT REMAINDER

IN NUMBER

LESS THAN

Figure A-5. SUBROUTINE PBCD (1 of 1)

6-18

FILL IN REST
| - OF BCNUM WITH
BLANKS

" RETURN

* SET ITEM
COUNT ER

INITIALIZE
LINE AND
PAGE COUNTERS
: AND KEY

PRINTOUT

ARE ALL
ITEMS
. PRINTED

(- ReTwRN -)+

WRITE
TITLE AND
HEADING

PRINT
COUNTER

© INCREMENT

. INCREMENT
LINE COUNTER

s
LINE COUNT
LESS THAN

50

ZERO
LINE COUNT
AND
INCREMENT
. PAGE COUNT

S PRINT

COUNT LESS

THAN ACTIVE
COUNT

ZERO LINE
COUNT AND
RESET PAGE
AND KEY FOR
INACTIVE
HEADING

" Figure A-6. SUBROUTINE PRINZ (L of 1)

6-19

OINITIALIZE
" COUNTER .
AND NTRAN

DIVIDE
OCTAL CODE
. BY 26°

!

CONVERT
DIVIDEND

INTO
FIRST CHAR,

L

DIVIDE
BY 26

REMAINDER -

v

© CONVERT
_DIVIDEND
INTO 2ND

CHARACTER

v

CONVERT
REMA | NDER
INTO 3RD
CHARACTER

._.__——-—b-

COMBINE
ALPHA
CHARACT ERS
INTO NTRAN

o RETURN -

Figure A-7. SUBROUTINE TRANL (1 of 1)

6720

APPENDIX B

GLOSSARY OF TERMS

1.0 INDEX OF VARIABLES =

The following is an alphabet
Table Program.

" NAME

ACTCT
APHT -
- DM26
INACT
IPAG
KBUF -

. KNT
KREF

" KTAB .
KTRAK
ICT
NAMCT
NCANP
NITEM

- NTRAN
NTYP
NWORDS

2.0 DEFINITIONS

ACTCT

ical ‘listing of the terms used in the DTC Reference

DESCRIPTION

Active name count,
Conversion table.
Conversion factor.
Inactive name count.
Page number.
Input buffer.
Word/record.
 Reference table.
‘Output array.
Process flag.
Line count.
 Total name count.
Failure type.
Items/record.
Temp. conversion buffer.
Name classification.,
Words/record.

DESCRIPTION

Contains the number of active variables in the
model, and is taken from the twenty-first word

of the DTC/AMA reference table prologue record.
The value of ACTCT is tested in subroutines
-DTCINP & PRINT to provide separate printouts
for the active and inactive variables.

6-21

NAME

 APHT

~ DM26

~ INACT

IPAG

KBUF

DESCRIPTION

Table generated in subroutine TRANL to
represent in BCD the twenty-six letters of

the alphabet. The table is generated by three
sets of DUP and VFD psuedo operators which
produces a table containing octal 21 through 31,

.4 through 51,and 62 through 71.

D1v1smn array for determining the APHT table
address of the letters for a three letter code name.
The numerical code number extracted from word

1 of KTAB is isolated and reduced by a bias of 1

for division by DM 26. The first division is by

26 squared to give the sub address in APHT of

the first character for the code name. The
remainder is divided by 26 for the second character,
and the final remainder is the sub address for the

third character.

'Contains the number of inactive variables in the -

model, and is the value taken from the twenty- .
second word of the DTC/AMA reference table
prologue record.

Paging count. Velue of this cell is printed at the
top RH of each output page.

A three hundred word buffer used for input storage

of information read in from the DTC/AMA tape. .-
The reference table prologue record is placed in
this storage block while ACTCT, INACT and NAMCT
are extracted. Each record on the tape is stored

in this block while test is made for key words in the
first word of records e.g. *NAMES for names
record, *REFER for reference table, etc. Each
names record is loaded into KBUF during the
generation of the two dimensional array KTAB.

During read in of the names record KNT is increment-
ed by one for each name processed. This count
continues to be additive regardless of how many
records processed. KNT is compared with the

active count to separate active and inactive variable

printing.

6-22

NAME -

. KREF

DESCRIPTION

A four thousand word storage block for the
DTC/AMA tape reference table. The first word
in KREF is word four of the actual reference

‘table record. Words one through three are utilized

during read in for data ID and record length.

- Each word in this array will contain the failure

candidacy and variable classification codes which
are extracted and converted in subroutine MANIP
for insertion in the array KTAB.

A 9 by 200 two dimensional array containing BCD :
data extracted and converted from the DTC/AMA
tape in a format for printout. The array is

filled for each record of names processed to the
extent of the number of names in the record. This
value is stored in NITEMS when the record is read.
Printouf is made record by record as processing

of each complete names record is completed. The
detailed description of data is described under
Output Format.

The program director flag (PDF). The value or
KTRAK is set prior to returns to the driver
subroutine where it is tested to determine continuing
flow of processing. ' :

KTRAK =0 Call DTCINP with PDF =1 (lst pass)

KTRAK =1 Call DTCINP with PDF =2 (2nd pass)

KTRAK =2 Call DTCINP with PDF =3 (3rd pass)

KTRAK =38 Call print with PDF =1 (st pass)

KTRAK =4 Call DTCINP with PDF = 4 subsequent
: passes through subroutine to read in
and process more names, Used as
print check indicating active name
proc¢ess not completed.

KTRAK =5 Same as 4 but signals that processing
‘ of inactive names is now underway.

.6-23

G

NAME"

LCT

NAMCT

' NCAND

NITEM

NTRAN

DESCRIPTION

KTRAK = 6 Name processing completed,
termination $ encountered.

KTRAK =17 Error in processing call ERREM
~ with PDF = 4 (only one error print
option utilized at present). Print
KTRAK. ' '

The line count of prmtmg pages contain flfty hnes

_ of data.

Total numbér of names derived from word 23 of
the DTC/AMA reference table prologue record.

Seven words in storage containing BCD data for
printing the failure candidacy. NCAND = BOTH,
NCAND +2 = ZEROS, NCAND +4=ONES. The
remaining words are blank. When the reference
data for each variable is processed, the appropriate
word from NCAND is stored in KTAB (word nine)

by the subroutine MANIP. Selection is accomphshed
by isolating bits 3, 4 & 5 of the word being
processed from the reference table KREF and
placing this number into XR4. NCAND is then
selected as modified by XR4 which results either

no printing (blanks) or one of the three words.

A word used for storing the value from the second
word in the DTC/AMA tape record which lists the
total number of items in the record. For final
names record, this number will equal the number
of names plus one for the terminating $.

Temporary storage in subroutine TRANS used when
converting from the numerical code to the three
letter alpha code. '

'BCD data contained in subroutine MANIP that contains

the name classifications for the corresponding codes
extracted from BIT positions 18, 19 and 20 of each
word of the DTC/AMA. reference data in KREF.

Word selection is similar to selection of NCAND. '

6-24 -

NAME

NWORDS

DESCRIPTION

From the third word for storing the value of the
names records from the DTC/AMA tape. It -
provides the number of words to be read from
the record, NWORDS are read from the record

 and stored in KBUF.

6-25

1.

7

REFERENCES.

"Automatic Malfunction Analysis by Discrete Network Simulation," Convair
division of General Dynamics, (Report) Appendix B 60C DDF66-007, October
1966. Also see Volume Two "Simulation of Selected Discrete Networks"
(Report) , ASA-CR 6910.

